如果某年年份的各位數(shù)字之和為7,我們稱該年為“七巧年”.例如,今年年份2014的各位數(shù)字之和為7,所以今年恰為“七巧年”,那么從2000年到2999年中“七巧年”共有
 
個.
考點:計數(shù)原理的應(yīng)用
專題:排列組合
分析:按照定義直接分類求出結(jié)果即可.
解答: 解:某年年份的各位數(shù)字之和為7,我們稱該年為“七巧年”.
∴從2000年到2999年中“七巧年”需要后面三個數(shù)之和為5,有
0、1、4;
0、0、5;
2、3、0;
2、2、1;
1,1,3
五個類型,后三個數(shù)字是
0、1、4;
2、3、0;
各有A33=6個,即12個.
后三個數(shù)字是
0、0、5;
2、2、1;
1、1、3
各有3個,共有9個;
共有12+9=21.
故答案為:21.
點評:本題考查排列組合的實際應(yīng)用,計數(shù)原理的應(yīng)用,考查分類討論思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
u
=(an+1,n+1),
v
=(an,n)且
u
-
v
=λ(2,1)
(1)證明:數(shù)列{an}為等差數(shù)列;
(2)若數(shù)列{an}的首項a1為奇數(shù),前n項和為Sn,若Sn最小值為-16,求a1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-a|+a2•x,其中a為常數(shù),若函數(shù)f(x)存在最小值的充要條件是a∈A.
(1)集合A=
 
;
(2)若當(dāng)a∈A時,函數(shù)f(x)的最小值為
1
8
,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將1,2,3,4,5,6,7,8,9這9個正整數(shù)分別寫在三張卡片上,要求每一張卡片上的三個數(shù)中任意兩數(shù)之差都不在這張卡片上,現(xiàn)在第一張卡片上已經(jīng)寫有1和5,第二張卡片上寫有2,第三張卡片上寫有3,則第一張卡片上的另一個數(shù)字是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
16
+
y2
9
=1,則該橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將1,2,3…,n2這n2個自然數(shù)任意分成n個組,取出每組數(shù)中的最大數(shù)組成集合M,記M中所有元素的和為Sn,則Sn的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓的方程是
x=1+2cosθ
y=-2+2sinθ
(θ為參數(shù)),則這個圓的半徑是( 。
A、1
B、2
C、
1
2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足條件:a1=
1
2
,an+1=
1+an
1-an
(n∈N+)
,則對n≤20的正整數(shù),an+an+1=
1
6
的概率為( 。
A、
1
20
B、
1
4
C、
1
5
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a6+a8=10,a3=1,則a11的值是( 。
A、15B、9C、10D、11

查看答案和解析>>

同步練習(xí)冊答案