已知點A(2,-1,-3),則點A關(guān)于x軸的對稱點A的坐標(biāo)為( 。
A、(2,1,-3)
B、(-2,-1,-3)
C、(-2,1,3)
D、(2,1,3)
考點:空間中的點的坐標(biāo)
專題:空間位置關(guān)系與距離
分析:根據(jù)空間中點的位置關(guān)系可得:點A關(guān)于x軸的對稱點A′的坐標(biāo)橫坐標(biāo)不變、縱坐標(biāo)、豎坐標(biāo)數(shù)值的相反數(shù),進(jìn)而得到答案.
解答: 解:由題意可得:點A(2,-1,-3),
所以根據(jù)空間中點的位置關(guān)系可得:點A關(guān)于x軸的對稱點A′的坐標(biāo)就是橫坐標(biāo)不變、縱坐標(biāo)、豎坐標(biāo)數(shù)值的相反數(shù),
所以可得A′(2,1,3).
故選:D.
點評:本題主要考查對稱點的坐標(biāo)的求法,解決此類問題的關(guān)鍵是熟練掌握空間直角坐標(biāo)系,以及坐標(biāo)系中點之間的位置關(guān)系,此題所以基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有男、女學(xué)生共8人,從男生中選2人,從女生中選1人分別參加數(shù)學(xué)、物理、化學(xué)三科競賽,共有90種不同方案,那么男、女生人數(shù)分別是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是等差數(shù)列{an} (n∈N*)的前n項和,且S6>S7>S5,有下列四個命題:
①d<0;②S11>0;③S12<0;④數(shù)列{Sn}中的最大項為S11.其中正確的命題是( 。
A、①②B、①③C、②③D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2
1
1
x
dx的值為( 。
A、1B、2C、ln2D、-ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-x2+1,則f(x)在點(1,1)處的切線的傾斜角為( 。
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B的對邊分別為a、b且A=2B,則
a
b
的取值范圍是( 。
A、(0,
3
B、(1,2)
C、(
1
2
,1)
D、(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面α的一個法向量為(1,2,0),平面β的一個法向量為(2,-1,0),則平面α與平面β的位置關(guān)系是( 。
A、平行B、相交但不垂直
C、垂直D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以橢圓C:
x2
8
+
y2
5
=1的焦點為頂點,以橢圓C的頂點為焦點的雙曲線的方程是( 。
A、
x2
8
-
y2
5
=1
B、
y2
5
-
x2
8
=1
C、
x2
3
-
y2
5
=1
D、
y2
5
-
x2
3
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:圓C過點A(6,0),B(1,5)且圓心在直線l:2x-7y+8=0上,求圓C的方程.

查看答案和解析>>

同步練習(xí)冊答案