若f(x)的定義域為[a,b],值域為[a,b](a<b),則稱函數(shù)f(x)是[a,b]上的“四維光軍”函數(shù).
①設g(x)=x2-x+是[1,b]上的“四維光軍”函數(shù),求常數(shù)b的值;
②問是否存在常數(shù)a,b(a>-2),使函數(shù)h(x)=是區(qū)間[a,b]上的“四維光軍”函數(shù)?若存在,求出a,b的值,否則,請說明理由.
①; ②不存在,詳見解析
解析試題分析:①根據(jù)信息找到b所滿足的等式即可求出b的值,一定要先判斷函數(shù)在閉區(qū)間上的單調性;②先假設存在題目要求的常數(shù),根據(jù)“四維光軍”函數(shù)的特性去找到此常數(shù)能得到的結論,推出矛盾即可說明這樣的常數(shù)是不存在的,這是一種逆向思維的題目,首先假設存在,由存在得出矛盾,則可知存在不成立.
試題解析:①由已知得,其對稱軸為,區(qū)間在對稱軸的右邊,
所以函數(shù)在區(qū)間上是單調遞增的, 3分
由“四維光軍”函數(shù)的定義可知,
,即,又因為,解得; 6分
②假如函數(shù)在區(qū)間上是“四維光軍”函數(shù), 7分
因為在區(qū)間是單調遞減函數(shù),則有, 10分
即,解得,這與已知矛盾. 12分
考點:函數(shù)單調性的應用,函數(shù)的圖形和性質的應用.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),,的定義域為
(1)求的值;
(2)若函數(shù)在區(qū)間上是單調遞減函數(shù),求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某社區(qū)有甲、乙兩家乒乓球俱樂部,兩家設備和服務都很好,但收費方式不同.甲家每張球臺每小時5元;乙家按月計費,一個月中30小時以內(含30小時)每張球臺90元,超過30小時的部分每張球臺每小時2元.小張準備下個月從這兩家中的一家租一張球臺開展活動,其活動時間不少于15小時,也不超過40小時.
(1)設在甲家租一張球臺開展活動小時的收費為元,在乙家租一張球臺開展活動小時的收費為元.試求和.
(2)問:小張選擇哪家比較合算?為什么?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某商場在店慶一周年開展“購物折上折活動”:商場內所有商品按標價的八折出售,折后價格每滿500元再減100元.如某商品標價為1500元,則購買該商品的實際付款額為1500×0.8-200=1000(元).設購買某商品得到的實際折扣率.設某商品標價為元,購買該商品得到的實際折扣率為.
(Ⅰ)寫出當時,關于的函數(shù)解析式,并求出購買標價為1000元商品得到的實際折扣率;
(Ⅱ)對于標價在[2500,3500]的商品,顧客購買標價為多少元的商品,可得到的實際折扣率低于?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
有兩個投資項目、,根據(jù)市場調查與預測,A項目的利潤與投資成正比,其關系如圖甲,B項目的利潤與投資的算術平方根成正比,其關系如圖乙.(注:利潤與投資單位:萬元)
(1)分別將A、B兩個投資項目的利潤表示為投資x(萬元)的函數(shù)關系式;
(2)現(xiàn)將萬元投資A項目, 10-x萬元投資B項目.h(x)表示投資A項目所得利潤與投資B項目所得利潤之和.求h(x)的最大值,并指出x為何值時,h(x)取得最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其圖象為曲線,點為曲線上的動點,在點處作曲線的切線與曲線交于另一點,在點處作曲線的切線.
(Ⅰ)當時,求函數(shù)的單調區(qū)間;
(Ⅱ)當點時,的方程為,求實數(shù)和的值;
(Ⅲ)設切線、的斜率分別為、,試問:是否存在常數(shù),使得?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com