年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
若f(x)的定義域?yàn)閇a,b],值域?yàn)閇a,b](a<b),則稱函數(shù)f(x)是[a,b]上的“四維光軍”函數(shù).
①設(shè)g(x)=x2-x+是[1,b]上的“四維光軍”函數(shù),求常數(shù)b的值;
②問是否存在常數(shù)a,b(a>-2),使函數(shù)h(x)=是區(qū)間[a,b]上的“四維光軍”函數(shù)?若存在,求出a,b的值,否則,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中常數(shù)a > 0.
(1) 當(dāng)a = 4時(shí),證明函數(shù)f(x)在上是減函數(shù);
(2) 求函數(shù)f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是定義在上的偶函數(shù),且時(shí),.
(Ⅰ)求,;
(Ⅱ)求函數(shù)的表達(dá)式;
(Ⅲ)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:當(dāng)f(x1)=f(x2)(x1≠x2)時(shí),x1+x2<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)若,求證:函數(shù)是上的奇函數(shù);
(2)若函數(shù)在區(qū)間上沒有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知某公司生產(chǎn)某品牌服裝的年固定成本為10萬元,每生產(chǎn)千件需另投入2.7萬元,設(shè)該公司年內(nèi)共生產(chǎn)該品牌服裝千件并全部銷售完,每千件的銷售收入為萬元,且.
(1)寫出年利潤(rùn)(萬元)關(guān)于年產(chǎn)品(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲年利潤(rùn)最大?
(注:年利潤(rùn)=年銷售收入-年總成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某紡紗廠生產(chǎn)甲、乙兩種棉紗,已知生產(chǎn)甲種棉紗1噸需耗一級(jí)籽棉2噸、二級(jí)籽棉1噸;生產(chǎn)乙種棉紗1噸需耗一級(jí)籽棉1噸,二級(jí)籽棉2噸.每1噸甲種棉紗的利潤(rùn)為900元,每1噸乙種棉紗的利潤(rùn)為600元.工廠在生產(chǎn)這兩種棉紗的計(jì)劃中,要求消耗一級(jí)籽棉不超過250噸,二級(jí)籽棉不超過300噸.問甲、乙兩種棉紗應(yīng)各生產(chǎn)多少噸,能使利潤(rùn)總額最大?并求出利潤(rùn)總額的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com