【題目】下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的為( )
A.y=x+1
B.y=﹣x2
C.y=
D.y=x|x|
【答案】D
【解析】解:A.y=x+1為非奇非偶函數(shù),不滿足條件.
B.y=﹣x2是偶函數(shù),不滿足條件.
C.y= 是奇函數(shù),但在定義域上不是增函數(shù),不滿足條件.
D.設(shè)f(x)=x|x|,則f(﹣x)=﹣x|x|=﹣f(x),則函數(shù)為奇函數(shù),
當(dāng)x>0時(shí),y=x|x|=x2 , 此時(shí)為增函數(shù),
當(dāng)x≤0時(shí),y=x|x|=﹣x2 , 此時(shí)為增函數(shù),綜上在R上函數(shù)為增函數(shù).
故選:D
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)單調(diào)性的判斷方法(單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較),還要掌握函數(shù)的奇偶性(偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測(cè)試中,卷面滿分為分,考生得分為整數(shù),規(guī)定分及以上為及格.某調(diào)研課題小組為了調(diào)查午休對(duì)考生復(fù)習(xí)效果的影響,對(duì)午休和不午休的考生進(jìn)行了測(cè)試成績的統(tǒng)計(jì),數(shù)據(jù)如下表:
分?jǐn)?shù)段 | |||||||
午休考生人數(shù) | 29 | 34 | 37 | 29 | 23 | 18 | 10 |
不午休考生人數(shù) | 20 | 52 | 68 | 30 | 15 | 12 | 3 |
(1)根據(jù)上述表格完成下列列聯(lián)表:
及格人數(shù) | 不及格人數(shù) | 合計(jì) | |
午休 | |||
不午休 | |||
合計(jì) |
(2)判斷“能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為成績及格與午休有關(guān)”?
0.10 | 0.05 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=6cos2 sinωx﹣3(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B、C為圖象與x軸的交點(diǎn),且△ABC為正三角形.
(1)求ω的值及函數(shù)f(x)的值域;
(2)若f(x0)= ,且x0∈(﹣ ),求f(x0+1)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)在上有最大值1,設(shè) .
(1)求的值;
(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(3)若函數(shù)有三個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍(為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于數(shù)集X={﹣1,x1 , x2 , …,xn},其中0<x1<x2<…<xn , n≥2,定義向量集Y={ =(s,t),s∈X,t∈X},若對(duì)任意 ,存在 ,使得 ,則稱X具有性質(zhì)P.例如{﹣1,1,2}具有性質(zhì)P.
(1)若x>2,且{﹣1,1,2,x}具有性質(zhì)P,求x的值;
(2)若X具有性質(zhì)P,求證:1∈X,且當(dāng)xn>1時(shí),x1=1;
(3)若X具有性質(zhì)P,且x1=1、x2=q(q為常數(shù)),求有窮數(shù)列x1 , x2 , …,xn的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信運(yùn)動(dòng)”是由騰訊開發(fā)的一個(gè)類似計(jì)步數(shù)據(jù)庫的公眾賬號(hào).用戶可以通過關(guān)注“微信運(yùn)動(dòng)”公眾號(hào)查看自己及好友每日行走的步數(shù)、排行榜,也可以與其他用戶進(jìn)行運(yùn)動(dòng)量的或點(diǎn)贊.現(xiàn)從某用戶的“微信運(yùn)動(dòng)”朋友圈中隨機(jī)選取40人,記錄他們某一天的行走步數(shù),并將數(shù)據(jù)整理如下:
步數(shù)/步 | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | 10000以上 |
男性人數(shù)/人 | 1 | 6 | 9 | 5 | 4 |
女性人數(shù)/人 | 0 | 3 | 6 | 4 | 2 |
規(guī)定:用戶一天行走的步數(shù)超過8000步時(shí)為“運(yùn)動(dòng)型”,否則為“懈怠型”.
(1)將這40人中“運(yùn)動(dòng)型”用戶的頻率看作隨機(jī)抽取1人為“運(yùn)動(dòng)型”用戶的概率.從該用戶的“微信運(yùn)動(dòng)”朋友圈中隨機(jī)抽取4人,記為“運(yùn)動(dòng)型”用戶的人數(shù),求和的數(shù)學(xué)期望;
(2)現(xiàn)從這40人中選定8人(男性5人,女性3人),其中男性中“運(yùn)動(dòng)型”有3人,“懈怠型”有2人,女性中“運(yùn)動(dòng)型”有2人,“懈怠型”有1人.從這8人中任意選取男性3人、女性2人,記選到“運(yùn)動(dòng)型”的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A.(不等式選做題)若存在實(shí)數(shù)x使|x﹣a|+|x﹣1|≤3成立,則實(shí)數(shù)a的取值范圍是 .
B.(幾何證明選做題)如圖,在圓O中,直徑AB與弦CD垂直,垂足為E,EF⊥DB,垂足為F,若AB=6,AE=1,則DFDB= .
C.(坐標(biāo)系與參數(shù)方程)直線2ρcosθ=1與圓ρ=2cosθ相交的弦長為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)fn(x)=xn+bx+c(n∈N+ , b,c∈R)
(1)設(shè)n≥2,b=1,c=﹣1,證明:fn(x)在區(qū)間 內(nèi)存在唯一的零點(diǎn);
(2)設(shè)n=2,若對(duì)任意x1 , x2∈[﹣1,1],有|f2(x1)﹣f2(x2)|≤4,求b的取值范圍;
(3)在(1)的條件下,設(shè)xn是fn(x)在 內(nèi)的零點(diǎn),判斷數(shù)列x2 , x3 , …,xn 的增減性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,F(xiàn)是拋物線C:x2=2py(p>0)的焦點(diǎn),M是拋物線C上位于第一象限內(nèi)的任意一點(diǎn),過M,F(xiàn),O三點(diǎn)的圓的圓心為Q,點(diǎn)Q到拋物線C的準(zhǔn)線的距離為 .
(1)求拋物線C的方程;
(2)是否存在點(diǎn)M,使得直線MQ與拋物線C相切于點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由;
(3)若點(diǎn)M的橫坐標(biāo)為 ,直線l:y=kx+ 與拋物線C有兩個(gè)不同的交點(diǎn)A,B,l與圓Q有兩個(gè)不同的交點(diǎn)D,E,求當(dāng) ≤k≤2時(shí),|AB|2+|DE|2的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com