平面內(nèi)△ABC及一點(diǎn)O滿(mǎn)足
AO
AB
=
BO
BA
,
BO
BC
=
CO
CB
,則點(diǎn)O是△ABC的( 。
A、重心B、垂心C、內(nèi)心D、外心
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專(zhuān)題:平面向量及應(yīng)用
分析:
AB
•(
AO
+
BO
)=0,得出|
OA
|=|
OB
|,
BO
BC
=
CO
CB
,得出|
OC
|=|
OB
|,根據(jù)三角形的性質(zhì).
解答: 解:∵
AO
AB
=
BO
BA
,
AB
•(
AO
+
BO
)=0,
∴(
OB
-
OA
)(
OA
+
OB
)=0
∴|
OA
|=|
OB
|,
BO
BC
=
CO
CB
BO
BC
=
CO
CB
,
∴同理得出|
OC
|=|
OB
|,
∴點(diǎn)O是△ABC的外心.
故選:D
點(diǎn)評(píng):本題考查了向量的運(yùn)算,三角形的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,一個(gè)地區(qū)分為5個(gè)行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一顏色,現(xiàn)有4種顏色可供選擇,則不同的著方法共有( 。┓N.
A、36B、24C、72D、48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=3
,
a
b
=-12
,則向量
b
在向量
a
方向上的投影的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

考察下列三個(gè)命題,在“橫線”處都缺少一個(gè)條件,補(bǔ)上這個(gè)條件使其構(gòu)成真命題(其中l(wèi)?m為直線,α?β為平面),則此條件為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

確定結(jié)論“X與Y有關(guān)系”的可信度為99%時(shí),則隨即變量k2的觀測(cè)值k必須( 。
A、大于10.828
B、大于7.879
C、大于6.635
D、大于2.706

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于數(shù)列{xn},如果存在一個(gè)正整數(shù)m,使得對(duì)任意的n(n∈N*)都有xn+m=xn成立,那么就把這樣一類(lèi)數(shù)列{xn}稱(chēng)作周期為m的周期數(shù)列,m的最小值稱(chēng)作數(shù)列{xn}的最小正周期,以下簡(jiǎn)稱(chēng)周期.例如當(dāng)xn=2時(shí){xn}是周期為1的周期數(shù)列,當(dāng)yn=sin(
π
2
n)
時(shí){yn}是周期為4的周期數(shù)列.
(1)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且4Sn=(an+1)2
①若an>0,試判斷數(shù)列{an}是否為周期數(shù)列,并說(shuō)明理由;
②若anan+1<0,試判斷數(shù)列{an}是否為周期數(shù)列,并說(shuō)明理由;
(2)設(shè)數(shù)列{an}滿(mǎn)足an+2=an+1-an+1(n∈N*),a1=2,a2=3,數(shù)列{an}的前n項(xiàng)和為Sn,試問(wèn)是否存在實(shí)數(shù)p,q,使對(duì)任意的n∈N*都有p≤(-1)n
Sn
n
≤q成立,若存在,求出p,q的取值范圍;不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2+ax+b,滿(mǎn)足f(0)=6,f(1)=5.
(1)求函數(shù)y=f(x)的解析式;
(2)當(dāng)x∈[-2,2]時(shí),求函數(shù)y=f(x)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)準(zhǔn)備招聘一批大學(xué)生到本單位就業(yè),但在簽約前要對(duì)他們的某項(xiàng)專(zhuān)業(yè)技能進(jìn)行測(cè)試.在待測(cè)試的某一個(gè)小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),如果從中隨機(jī)選2人參加測(cè)試,其中恰為一男一女的概率為
8
15

(Ⅰ)求該小組中女生的人數(shù);
(Ⅱ)假設(shè)此項(xiàng)專(zhuān)業(yè)技能測(cè)試對(duì)該小組的學(xué)生而言,每個(gè)女生通過(guò)的概率均為
3
4
,每個(gè)男生通過(guò)的概率均為
1
2
,現(xiàn)對(duì)該小組中男生甲、男生乙和女生丙3個(gè)人進(jìn)行測(cè)試,求這3人中通過(guò)測(cè)試的人數(shù)不少于2人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
4
x-2
在區(qū)間[3,6]上的最小值是( 。
A、1B、3C、-2D、5

查看答案和解析>>

同步練習(xí)冊(cè)答案