【題目】某校共有學(xué)生2000人,其中男生1100人,女生900人為了調(diào)查該校學(xué)生每周平均課外閱讀時(shí)間,采用分層抽樣的方法收集該校100名學(xué)生每周平均課外閱讀時(shí)間(單位:小時(shí))

1)應(yīng)抽查男生與女生各多少人?

2)如圖,根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均課外閱讀時(shí)間的頻率分布直方圖,其中樣本數(shù)據(jù)分組區(qū)間為.若在樣本數(shù)據(jù)中有38名女學(xué)生平均每周課外閱讀時(shí)間超過(guò)2小時(shí),請(qǐng)完成每周平均課外閱讀時(shí)間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均課外閱讀時(shí)間與性別有關(guān)”.

男生

女生

總計(jì)

每周平均課外閱讀時(shí)間不超過(guò)2小時(shí)

每周平均課外閱讀時(shí)間超過(guò)2小時(shí)

總計(jì)

附:

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

【答案】(1)男生人數(shù)人,女生人數(shù):人(2)填表詳見(jiàn)解析,有95%的把握認(rèn)為“該校學(xué)生的每周平均閱讀時(shí)間與性別有關(guān).

【解析】

1)由男女生比例以及分層抽樣特征,即可求解;(2)由頻率分布直方圖可得到學(xué)生平均每周課外閱讀時(shí)間超過(guò)2小時(shí)

1)男生人數(shù):女生人數(shù)=1100900=119

所以,男生人數(shù)

女生人數(shù):.

2)由頻率分布直方圖可得到學(xué)生平均每周課外閱讀時(shí)間超過(guò)2小時(shí)的人數(shù)為:

人,

所以,平均每周課外閱讀時(shí)間超過(guò)2小時(shí)的男生人數(shù)為37.

可得每周課外閱讀時(shí)間與性別的列聯(lián)表為

男生

女生

總計(jì)

每周平均閱讀時(shí)間不超過(guò)2小時(shí)

18

7

25

每周平均閱讀時(shí)間超過(guò)2小時(shí)

37

38

75

總計(jì)

55

45

100

所以,有95%的把握認(rèn)為“該校學(xué)生的每周平均閱讀時(shí)間與性別有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)在中,角A,B,C所對(duì)的邊分別是a,b,c,證明余弦定理:;

2)長(zhǎng)江某地南北岸平行,如圖所示,江面寬度,一艘游船從南岸碼頭A出發(fā)航行到北岸,假設(shè)游船在靜水中的航行速度,水流速度,設(shè)的夾角為θ),北岸的點(diǎn)在點(diǎn)A的正北方向.

①當(dāng)多大時(shí),游船能到達(dá)處,需要航行多少時(shí)間?

②當(dāng)時(shí),判斷游船航行到達(dá)北岸的位置在的左側(cè)還是右側(cè),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知以C為圓心的圓及其上一點(diǎn).

1)設(shè)平行于的直線與圓C相交于兩點(diǎn),且,求直線的方程;

2)設(shè)點(diǎn)滿足:存在圓C上的兩點(diǎn)使得,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線的一個(gè)焦點(diǎn)恰好與拋物線的焦點(diǎn)重合,且兩曲線的一個(gè)交點(diǎn)為,若,則雙曲線的方程為(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)O是銳角△ABC的外心,a,b,c分別為內(nèi)角A、B、C的對(duì)邊,A= ,且,則λ的值為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有甲、乙、丙三個(gè)盒子,其中每個(gè)盒子中都裝有標(biāo)號(hào)分別為123、4、5、6的六張卡片,現(xiàn)從甲、乙、丙三個(gè)盒子中依次各取一張卡片使得卡片上的標(biāo)號(hào)恰好成等差數(shù)列的取法數(shù)為(

A.14B.16C.18D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),的定義域分別為,若存在常數(shù),滿足:①對(duì)任意,恒有,且.②對(duì)任意,關(guān)于的不等式組恒有解,則稱的一個(gè)“型函數(shù)”.

(1)設(shè)函數(shù),求證:的一個(gè)“型函數(shù)”;

(2)設(shè)常數(shù),函數(shù),.的一個(gè)“型函數(shù)”,求的取值范圍;

(3)設(shè)函數(shù).問(wèn):是否存在常數(shù),使得函數(shù)的一個(gè)“型函數(shù)”?若存在,求的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合.

(1)判斷是否屬于;

(2)判斷是否屬于

(3)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在.

1)若圓心也在直線上,過(guò)點(diǎn)作圓的切線,求切線方程;

2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案