【題目】將一顆均勻的骰子擲兩次,第一次得到的點(diǎn)數(shù)記為,第一次得到的點(diǎn)數(shù)記為,則方程組有唯一解的概率是___________

【答案】

【解析】

所有的可能的結(jié)果(a,b)共有6×636種,滿足直線l1l2平行的結(jié)果(a,b)共有3個(gè),由此求得直線l1l2平行的概率,用1減去直線l1l2平行的概率,即得所求.

由題意可知,方程組有唯一解轉(zhuǎn)化為表示方程組的兩直線相交,

即直線l1:ax+by=3與直線l2x+2y=2相交,

又所有的可能出現(xiàn)的結(jié)果(a,b)共有6×636種,當(dāng)直線l1l2平行時(shí),應(yīng)有,

故其中滿足直線l1與直線l2平行的結(jié)果(a,b)共有:(12)、(2,4)、(36),總計(jì)3個(gè),故直線l1l2平行的概率為.又由a,b的意義可知兩條直線不重合,

故直線l1l2相交的概率為 1,

∴方程組有唯一解的概率為 1,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的離心率為,且經(jīng)過(guò)點(diǎn).

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問(wèn)在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對(duì)稱(chēng)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的右焦點(diǎn)為,直線為.

1)求到點(diǎn)和直線的距離相等的點(diǎn)的軌跡方程;

2)過(guò)點(diǎn)作直線交橢圓于點(diǎn),又直線于點(diǎn),若,求線段的長(zhǎng);

3)已知點(diǎn)的坐標(biāo)為,,直線交直線于點(diǎn),且和橢圓的一個(gè)交點(diǎn)為點(diǎn),是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將數(shù)列的前項(xiàng)分成兩部分,且兩部分的項(xiàng)數(shù)分別是,若兩部分和相等,則稱(chēng)數(shù)列的前項(xiàng)的和能夠進(jìn)行等和分割.

1)若,試寫(xiě)出數(shù)列的前項(xiàng)和所有等和分割;

2)求證:等差數(shù)列的前項(xiàng)的和能夠進(jìn)行等和分割;

3)若數(shù)列的通項(xiàng)公式為:,且數(shù)列的前項(xiàng)的和能夠進(jìn)行等和分割,求所有滿足條件的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,橢圓經(jīng)過(guò)點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)是橢圓上的任意一點(diǎn),射線與橢圓交于點(diǎn),過(guò)點(diǎn)的直線與橢圓有且只有一個(gè)公共點(diǎn),直線與橢圓交于,兩個(gè)相異點(diǎn),證明:面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列A: ,… ().如果對(duì)小于()的每個(gè)正整數(shù)都有 ,則稱(chēng)是數(shù)列A的一個(gè)“G時(shí)刻”.是數(shù)列A的所有“G時(shí)刻組成的集合.

(1)對(duì)數(shù)列A:-2,2,-1,1,3,寫(xiě)出的所有元素;

(2)證明:若數(shù)列A中存在使得>,則 ;

(3)證明:若數(shù)列A滿足- ≤1(n=2,3, …,N),的元素個(gè)數(shù)不小于 -.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列,.

(1),求;

(2),求關(guān)于m的表達(dá)式;

(3)若數(shù)列均是項(xiàng)數(shù)為項(xiàng)的有窮數(shù)列.,現(xiàn)將中的項(xiàng)一一取出,并按照從小到大的順序排成一列,得到.求證:對(duì)于給定的,的所有可能取值的奇偶性相同.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于實(shí)數(shù)x,符號(hào)[x]表示不超過(guò)x的最大整數(shù),例如[π]=3,[﹣1.08]=﹣2,定義函數(shù)f(x)=x﹣[x],則下列命題中正確的是  

①函數(shù)f(x)的最大值為1; ②函數(shù)f(x)的最小值為0;

③方程有無(wú)數(shù)個(gè)根; ④函數(shù)f(x)是增函數(shù).

A. ②③ B. ①②③ C. D. ③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)隨機(jī)詢問(wèn)110名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:

合計(jì)

愛(ài)好

40

20

60

不愛(ài)好

20

30

50

合計(jì)

60

50

110

K2,

附表:

P(K2k0)

0.050

0.010

0.001

k0

3.841

6.635

10.828

參照附表,得到的正確結(jié)論是(

A.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)

B.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)

C.99%以上的把握認(rèn)為愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)

D.99%以上的把握認(rèn)為愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)

查看答案和解析>>

同步練習(xí)冊(cè)答案