【題目】將數(shù)列的前項(xiàng)分成兩部分,且兩部分的項(xiàng)數(shù)分別是,若兩部分和相等,則稱數(shù)列的前項(xiàng)的和能夠進(jìn)行等和分割.
(1)若,試寫出數(shù)列的前項(xiàng)和所有等和分割;
(2)求證:等差數(shù)列的前項(xiàng)的和能夠進(jìn)行等和分割;
(3)若數(shù)列的通項(xiàng)公式為:,且數(shù)列的前項(xiàng)的和能夠進(jìn)行等和分割,求所有滿足條件的.
【答案】(1)或; (2)見解析; (3)或.
【解析】
(1)直接利用數(shù)列的通項(xiàng)公式分別計(jì)算出前四項(xiàng)的大小,再進(jìn)行等和分割,即可求解;
(2)根據(jù)等差數(shù)列的性質(zhì)可以得到,進(jìn)而可以得出前項(xiàng)與后項(xiàng)的和相等;
(3)根據(jù)數(shù)列的通項(xiàng)公式求出前n項(xiàng)和,分別討論或時(shí)滿足等和分割條件的結(jié)果.
(1)由題意,數(shù)列,
可得,
則或.
(2)由數(shù)列為等差數(shù)列,所以,
將上述個(gè)兩式子分成兩部分,可得其和是相等的,
所以等差數(shù)列的前項(xiàng)的和能夠進(jìn)行等和分割.
(3)數(shù)列的通項(xiàng)公式為:,且數(shù)列的前項(xiàng)的和能夠進(jìn)行等和分割,
可得為偶數(shù),所以或,
當(dāng)時(shí),由(2)可知,數(shù)列可以進(jìn)行等和分割;
當(dāng)時(shí),可首先考慮,
則可分割成兩部分,所以,
即時(shí),前項(xiàng)能進(jìn)行等和分割,
當(dāng)時(shí),前項(xiàng)為,
由(2)可得能分成等和的兩部分,
分別把兩部分進(jìn)行加入,可得兩部分和相等,
即或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在圓外,過點(diǎn)作圓的切線,設(shè)切點(diǎn)為.
(1)若點(diǎn)運(yùn)動(dòng)到處,求此時(shí)切線的方程;
(2)求滿足的點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖像向左平移個(gè)單位長度,再將圖像上所有點(diǎn)的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),得到的圖像.
(1)求的單調(diào)遞增區(qū)間;
(2)若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在與正實(shí)數(shù),使得成立,則稱函數(shù)在處存在距離為的對(duì)稱點(diǎn),把具有這一性質(zhì)的函數(shù)稱之為“型函數(shù)”.
(1)設(shè),試問是否是“型函數(shù)”?若是,求出實(shí)數(shù)的值;若不是,請(qǐng)說明理由;
(2)設(shè)對(duì)于任意都是“型函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對(duì)應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對(duì)應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為( )
A. B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,,且點(diǎn)()在直線上.
(1)求數(shù)列的通項(xiàng)公式;
(2)對(duì)任意的,將數(shù)列落入?yún)^(qū)間內(nèi)的項(xiàng)的個(gè)數(shù)記為,求的通項(xiàng)公式;
(3)對(duì)于(2)中,記,數(shù)列前項(xiàng)和為,求使等式成立的所有正整數(shù)、的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一顆均勻的骰子擲兩次,第一次得到的點(diǎn)數(shù)記為,第一次得到的點(diǎn)數(shù)記為,則方程組有唯一解的概率是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的定義域D,并判斷的奇偶性;
(2)如果當(dāng)時(shí),的值域是,求a的值;
(3)對(duì)任意的m,,是否存在,使得,若存在,求出t,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),
(1)當(dāng)時(shí),求在上的最大值和最小值;
(2)當(dāng)時(shí),過點(diǎn)作函數(shù)的圖象的切線,求切線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com