【題目】盒中有6只燈泡,其中有2只是次品,4只是正品.從中任取2只,試求下列事件的概率.
(Ⅰ)取到的2只都是次品;
(Ⅱ)取到的2只中恰有一只次品.

【答案】解:(Ⅰ)將6只燈泡分別標(biāo)號(hào)為1,2,3,4,5,6;且1,2為次品;從6只燈泡中取出2只的基本事件:
1﹣2、1﹣3、1﹣4、1﹣5、1﹣6、2﹣3、2﹣4、2﹣5、2﹣6、3﹣4、3﹣5、3﹣6、4﹣5、4﹣6、5﹣6共有15種
從6只燈泡中取出2只都是次品的事件只有1個(gè),因此取到2只次品的概率為
(Ⅱ)根據(jù)題意,取到的2只產(chǎn)品中正品,次品各一只的事件有
1﹣3、1﹣4、1﹣5、1﹣6、2﹣3、2﹣4、2﹣5、2﹣6共有8種,
而總的基本事件共有15種,
因此取到2只產(chǎn)品中恰有一只次品的概率為
【解析】(1)將6只燈泡分別標(biāo)號(hào)為1,2,3,4,5,6;且1,2為次品;用列舉法可得從6只燈泡中取出2只的基本事件,即可得從6只燈泡中取出2只都是次品的事件只有1個(gè),進(jìn)而由等可能事件的概率計(jì)算可得答案;(2)由(1)所的基本事件,分析可得取到的2只產(chǎn)品中正品,次品各一只的事件數(shù)目,由古典概型概率公式,計(jì)算可得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 是R上的增函數(shù),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,側(cè)面為矩形, , 的中點(diǎn), 交于點(diǎn),且平面

1)證明:平面平面

2)若, 的重心為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 分別為等差數(shù)列和等比數(shù)列, , 的前項(xiàng)和為.函數(shù)的導(dǎo)函數(shù)是,有,且是函數(shù)的零點(diǎn).

(1)求的值;

(2)若數(shù)列公差為,且點(diǎn),當(dāng)時(shí)所有點(diǎn)都在指數(shù)函數(shù)的圖象上.

請(qǐng)你求出解析式,并證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.
(1)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?
(2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二(1)班學(xué)生為了籌措經(jīng)費(fèi)給班上購買課外讀物,班委會(huì)成立了一個(gè)社會(huì)實(shí)踐小組,決定利用暑假八月份(30天計(jì)算)輪流換班去銷售一種時(shí)令水果.在這30天內(nèi)每斤水果的收入(元)與時(shí)間(天)的部分?jǐn)?shù)據(jù)如下表所示,已知日銷售(斤)與時(shí)間(天)滿足一次函數(shù)關(guān)系.

(1)根據(jù)提供的圖象和表格,下廚每斤水果的收入(元)與時(shí)間(天)所滿足的函數(shù)關(guān)系式及日銷售量(斤)與時(shí)間(天)的一次函數(shù)關(guān)系;

(2)用(元)表示銷售水果的日收入,寫出的函數(shù)關(guān)系式,并求這30天中第幾天日收入最大,最大值為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:不等式2x﹣x2<m對(duì)一切實(shí)數(shù)x恒成立,命題q:m2﹣2m﹣3≥0,如果¬p與“p∧q”同時(shí)為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在測(cè)試中,客觀題難題的計(jì)算公式為,其中為第題的難度, 為答對(duì)該題的人數(shù), 為參加測(cè)試的總?cè)藬?shù).現(xiàn)對(duì)某校高三年級(jí)120名學(xué)生進(jìn)行一次測(cè)試,共5道客觀題.測(cè)試前根據(jù)對(duì)學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:

測(cè)試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號(hào)后統(tǒng)計(jì)各題的作答情況,如下表所示(“√”表示答對(duì),“×”表示答錯(cuò)):

(1)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實(shí)測(cè)的答對(duì)人數(shù)及相應(yīng)的實(shí)測(cè)難度填入下表,并估計(jì)這120名學(xué)生中第5題的實(shí)測(cè)答對(duì)人數(shù);

(2)從編號(hào)為1到5的5人中隨機(jī)抽取2人,求恰好有1人答對(duì)第5題的概率;

(3)定義統(tǒng)計(jì)量,其中為第題的實(shí)測(cè)難度, 為第題的預(yù)估難度(.規(guī)定:若,則稱該次測(cè)試的難度預(yù)估合理,否則為不合理.判斷本次測(cè)試的難度預(yù)估是否合理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為坐標(biāo)原點(diǎn),雙曲線C: =1(a>0,b>0)的左焦點(diǎn)為F(﹣c,0)(c>0),以O(shè)F為直徑的圓交雙曲線C的漸近線于A,B,O三點(diǎn),且( + =0,若關(guān)于x的方程ax2+bx﹣c=0的兩個(gè)實(shí)數(shù)根分別為x1和x2 , 則以|x1|,|x2|,2為邊長(zhǎng)的三角形的形狀是(
A.鈍角三角形
B.直角三角形
C.銳角三角形
D.等腰直角三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案