5.0246.63510.828附:">
【題目】某校在本校任選了一個班級,對全班50名學(xué)生進行了作業(yè)量的調(diào)查,根據(jù)調(diào)查結(jié)果統(tǒng)計后,得到如下的列聯(lián)表,已知在這50人中隨機抽取1人,認為作業(yè)量大的概率為.
認為作業(yè)量大 | 認為作業(yè)量不大 | 合計 | |
男生 | 18 | ||
女生 | 17 | ||
合計 | 50 |
(Ⅰ)請完成上面的列聯(lián)表;
(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認為“認為作業(yè)量大”與“性別”有關(guān)?
附表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | span>5.024 | 6.635 | 10.828 |
附:
【答案】(1)列聯(lián)表見解析.
(2)有的把握認為“認為作業(yè)量大”與“性別”有關(guān).
【解析】分析:(Ⅰ)設(shè)認為作業(yè)量大的共有個人,由,求得,即可補全的列聯(lián)表;
(Ⅱ)由(1)中列聯(lián)表中的數(shù)據(jù),求解的值,即可作出判斷.
詳解:(Ⅰ)設(shè)認為作業(yè)量大的共有個人,則,
解得;
認為作業(yè)量大 | 認為作業(yè)量不大 | 合計 | |
男生 | 18 | 8 | 26 |
女生 | 7 | 17 | 24 |
合計 | 25 | 25 | 50 |
(Ⅱ)根據(jù)列聯(lián)表中的數(shù)據(jù),得
.
因此有的把握認為“認為作業(yè)量大”與“性別”有關(guān).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高鐵、網(wǎng)購、移動支付和共享單車被譽為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強勁活力.某移動支付公司從我市移動支付用戶中隨機抽取100名進行調(diào)查,得到如下數(shù)據(jù):
每周移動支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計 | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移動支付超過3次的用戶稱為“移動支付活躍用戶”,由以上數(shù)據(jù)完成下列2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.005的前提下,認為“移動支付活躍用戶”與性別有關(guān)?
移動支付活躍用戶 | 非移動支付活躍用戶 | 總計 | |
男 | |||
女 | |||
總計 | 100 |
(2)把每周使用移動支付6次及6次以上的用戶稱為“移動支付達人”,視頻率為概率,在我市所有“移動支付達人”中,隨機抽取4名用戶.為了鼓勵男性用戶使用移動支付,對抽出的男“移動支付達人”每人獎勵300元,記獎勵總金額為,求的分布列及數(shù)學(xué)期望.
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于下列命題:
①若是第一象限角,且,則;
②函數(shù)是偶函數(shù);
③函數(shù)的一個對稱中心是;
④函數(shù)在上是增函數(shù),
所有正確命題的序號是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:方程x2-2mx+m=0沒有實數(shù)根;命題q:x∈R,x2+mx+1≥0.
(1)寫出命題q的否定“q”.
(2)如果“p∨q”為真命題,“p∧q”為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用收集到的6組數(shù)據(jù)對制作成如圖所示的散點圖(點旁的數(shù)據(jù)為該點坐標(biāo)),并由最小二乘法計算得到回歸直線的方程:,相關(guān)系數(shù)為,相關(guān)指數(shù)為;經(jīng)過殘差分析確定點為“離群點”(對應(yīng)殘差過大的點),把它去掉后,再用剩下的5組數(shù)據(jù)計算得到回歸直線的方程:,相關(guān)系數(shù)為,相關(guān)指數(shù)為.則以下結(jié)論中,不正確的是( )
A. , B. ,
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且f(x﹣ )=f(x+ )恒成立,當(dāng)x∈[2,3]時,f(x)=x,則當(dāng)x∈(﹣2,0)時,函數(shù)f(x)的解析式為( )
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品在近30天內(nèi)每件的銷售價格p(元)與時間t(天)的函數(shù)關(guān)系是該商品的日銷售量Q(件)與時間t(天)的函數(shù)關(guān)系是Q=-t+40(0<t≤30,t∈N).
(1)求這種商品的日銷售金額的解析式;
(2)求日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的第幾天?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且f(x﹣ )=f(x+ )恒成立,當(dāng)x∈[2,3]時,f(x)=x,則當(dāng)x∈(﹣2,0)時,函數(shù)f(x)的解析式為( )
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+ax2
(1)討論f(x)的單調(diào)性;
(2)設(shè)a>1,若對任意x1 , x2∈(0,+∞),恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com