【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建極坐標(biāo)系,直線的極坐標(biāo)方程為
(Ⅰ)求的極坐標(biāo)方程;
(Ⅱ)射線與圓C的交點(diǎn)為與直線的交點(diǎn)為,求的范圍.
【答案】(Ⅰ)(Ⅱ)
【解析】
(1)圓C的參數(shù)方程消去參數(shù)能求出圓C的普通方程,再由x=ρcosθ,y=ρsinθ,能求出C的極坐標(biāo)方程;(2)設(shè)P(ρ1,θ1),則有ρ1=4cosθ1,設(shè)Q(ρ2,θ1),且直線l的方程是,由此能求出|OP||OQ|的范圍.
(1)∵圓C的參數(shù)方程為為參數(shù)),
∴圓C的普通方程是(x﹣2)2+y2=4,
又x=ρcosθ,y=ρsinθ,
∴圓C的極坐標(biāo)方程為ρ=4cosθ;
(2)設(shè)P(ρ1,θ1),則有ρ1=4cosθ1,
設(shè)Q(ρ2,θ1),且直線l的方程是,
∴,
∴2≤|OP||OQ|≤3.
∴|OP||OQ|的范圍是[2,3].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷(xiāo)售一種水果的經(jīng)驗(yàn)表明,該水果每日的銷(xiāo)售量(單位:千克)與銷(xiāo)售價(jià)格(單位:元/千克)滿(mǎn)足關(guān)系式,其中,為常數(shù).已知銷(xiāo)售價(jià)格為6元/千克時(shí),每日可售出該水果52千克.
(1)求的值;
(2)若該水果的成本為5元/千克,試確定銷(xiāo)售價(jià)格的值,使商場(chǎng)每日銷(xiāo)售該水果所獲得的利潤(rùn)最大,并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時(shí),求函數(shù)在處的切線方程;
(2)記函數(shù)的導(dǎo)函數(shù)是,若不等式對(duì)任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),是函數(shù)的導(dǎo)函數(shù),若函數(shù)存在兩個(gè)極值點(diǎn),,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且(a+b﹣c)(sinA+sinB+sinC)=bsinA.
(1)求C;
(2)若a=2,c=5,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年雙11當(dāng)天,某購(gòu)物平臺(tái)的銷(xiāo)售業(yè)績(jī)高達(dá)2135億人民幣.與此同時(shí),相關(guān)管理部門(mén)推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.9,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為140次.
(1)請(qǐng)完成下表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)0.5%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
對(duì)服務(wù)好評(píng) | 對(duì)服務(wù)不滿(mǎn)意 | 合計(jì) | |
對(duì)商品好評(píng) | 140 | ||
對(duì)商品不滿(mǎn)意 | 10 | ||
合計(jì) | 200 |
(2)若將頻率視為概率,某人在該購(gòu)物平臺(tái)上進(jìn)行的3次購(gòu)物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為X.
①求隨機(jī)變量X的分布列;
②求X的數(shù)學(xué)期望和方差.
附:,其中n=a+b+c+d.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點(diǎn).
(1)若為線段上的動(dòng)點(diǎn),證明:平面平面;
(2)若為線段,,上的動(dòng)點(diǎn)(不含,),,三棱錐的體積是否存在最大值?如果存在,求出最大值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線上任意一點(diǎn)滿(mǎn)足,直線的方程為,且與曲線交于不同兩點(diǎn),.
(1)求曲線的方程;
(2)設(shè)點(diǎn),直線與的斜率分別為,,且,判斷直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),是拋物線:的焦點(diǎn),是拋物線上位于第一象限內(nèi)的任意一點(diǎn),過(guò),,三點(diǎn)的圓的圓心為.
(1)是否存在過(guò)點(diǎn),斜率為的直線,使得拋物線上存在兩點(diǎn)關(guān)于直線對(duì)稱(chēng)?若存在,求出的范圍;若不存在,說(shuō)明理由;
(2)是否存在點(diǎn),使得直線與拋物線相切于點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com