【題目】已知為坐標(biāo)原點(diǎn),是拋物線:的焦點(diǎn),是拋物線上位于第一象限內(nèi)的任意一點(diǎn),過(guò),,三點(diǎn)的圓的圓心為.
(1)是否存在過(guò)點(diǎn),斜率為的直線,使得拋物線上存在兩點(diǎn)關(guān)于直線對(duì)稱?若存在,求出的范圍;若不存在,說(shuō)明理由;
(2)是否存在點(diǎn),使得直線與拋物線相切于點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
【答案】(1)不存在,理由見(jiàn)解析;(2)存在,
【解析】
(1). 先假設(shè)存在,設(shè)直線的方程為,若A,B兩點(diǎn)關(guān)于直線對(duì)稱,則直線的方程為,聯(lián)立直線AB與拋物線方程,求A,B兩點(diǎn)的中點(diǎn)N,再將N帶入直線l中,在判斷是否能求出k的范圍;
(2). 將拋物線化為二次函數(shù)形:,利用導(dǎo)數(shù)的幾何意義,求得切線MQ,結(jié)合Q點(diǎn)的宗坐標(biāo)值,求得Q的橫坐標(biāo);最后根據(jù),列出關(guān)于關(guān)于M點(diǎn)橫坐標(biāo)x的方程,并求解即可。
(1)假設(shè)存在,設(shè)直線的方程為,關(guān)于直線對(duì)稱的兩點(diǎn),,由題意知,所以直線的方程為,
聯(lián)立消可得:,
(※),
所以,,
所以,中點(diǎn),由題意在直線上,
所以,即,
代入(※)式可得:,即,無(wú)實(shí)數(shù)解,故不存在符合題意的直線.
(2)點(diǎn),又,設(shè),
變形為,所以,
因?yàn)橹本為拋物線的切線,故,
解得,即,
又取中點(diǎn),由垂徑定理知,
所以可得:,
解得,所以存在符合題意
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建極坐標(biāo)系,直線的極坐標(biāo)方程為
(Ⅰ)求的極坐標(biāo)方程;
(Ⅱ)射線與圓C的交點(diǎn)為與直線的交點(diǎn)為,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有如下問(wèn)題:“今有曲池,上中周二丈,外周四丈,廣一丈,下中周一丈四尺,外周二丈四尺,廣五尺,深一丈,問(wèn)積幾何?”其意思為:“今有上下底面皆為扇形的水池,上底中周2丈,外周4丈,寬1丈;下底中周1丈4尺,外周長(zhǎng)2丈4尺,寬5尺;深1丈.問(wèn)它的容積是多少?”則該曲池的容積為( )立方尺(1丈=10尺,曲池:上下底面皆為扇形的土池,其容積公式為[(2×上寬+下寬)(2×下寬+上寬)]×深)
A.B.1890C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個(gè)極值點(diǎn),證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線:(,)的左、右焦點(diǎn)分別為,,過(guò)點(diǎn)且斜率為的直線交雙曲線于,兩點(diǎn),線段的垂直平分線恰過(guò)點(diǎn),則該雙曲線的離心率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x-a|-x(a>0).
(1)若a=3,解關(guān)于x的不等式f(x)<0;
(2)若對(duì)于任意的實(shí)數(shù)x,不等式f(x)-f(x+a)<a2+恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上,離心率為的橢圓過(guò)點(diǎn)
(1)求橢圓的方程;
(2)設(shè)不過(guò)原點(diǎn)的直線與該橢圓交于兩點(diǎn),滿足直線的斜率依次成等比數(shù)列,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,一個(gè)長(zhǎng)軸頂點(diǎn)在直線上,若直線與橢圓交于,兩點(diǎn),為坐標(biāo)原點(diǎn),直線的斜率為,直線的斜率為.
(1)求該橢圓的方程.
(2)若,試問(wèn)的面積是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】貴陽(yáng)市交管部門(mén)于2018年4月對(duì)貴陽(yáng)市長(zhǎng)期執(zhí)行的“兩限”政策進(jìn)行了調(diào)整,調(diào)整后貴陽(yáng)市貴A普客小汽車擁有和外地牌照汽車一樣的駛?cè)胍画h(huán)開(kāi)四停四的權(quán)利,為統(tǒng)計(jì)開(kāi)放政策實(shí)施后貴陽(yáng)市一環(huán)內(nèi)城區(qū)的交通流量狀況,市交管部門(mén)抽取了某月30天內(nèi)的日均汽車流量與實(shí)際容納量進(jìn)行對(duì)比,比值記為,若該比值不超過(guò)1稱為“暢通”,否則稱為“擁堵”,如圖所示的程序框圖實(shí)現(xiàn)的功能是( )
A.求30天內(nèi)交通的暢通率B.求30天內(nèi)交通的擁堵率
C.求30天內(nèi)交通的暢通天數(shù)D.求30天內(nèi)交通的擁堵天數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com