已知等差數(shù)列{an}的前n項和為Sn,且滿足S6=42,a5+a7=24.
(1)求數(shù)列{an}的通項an及前n項和Sn
(2)令bn=2-an(n∈N*),求數(shù)列{bn}的前n項和Tn
考點:數(shù)列的求和,等差數(shù)列的性質
專題:等差數(shù)列與等比數(shù)列
分析:(1)利用等差數(shù)列的通項公式及其前n項和公式即可得出;
(2)利用等比數(shù)列的前n項和公式即可得出.
解答: 解:(1)設等差數(shù)列{an}的公差為d,
∵s6=42,a5+a7=24,
6a1+
6×5
2
d=42
2a1+10d=24
,
解得a1=2,d=2,
∴an=2n,
Sn=2n+
n(n-1)
2
×2=n2+n
;
(2)bn=2-an=2-2n=4-n
Tn=
1
4
(1-
1
4n
)
1-
1
4
=
1
3
(1-
1
4n
)
點評:本題考查了等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex-tx(e為自然對數(shù)的底數(shù)).
(1)求函數(shù)f(x)的單調增區(qū)間;
(2)設關于x的不等式f(x)≥x2-2t-3的解集為M,且集合{x|x≥3}⊆M,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a
3
x3-
3
2
x2
+(a+1)x+1,其中a為實數(shù);
(1)當a=1時,試討論函數(shù)g(x)=f(x)-m的零點的個數(shù);
(2)已知不等式f'(x)>x2-x-a+1對任意a∈(0,+∞)都成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點為F1、F2,點P在橢圓C上,且|PF1|=
4
3

|PF2|=
14
3
,PF1⊥F1F2
(1)求橢圓C的方程;
(2)若直線L過圓x2+y2+4x-2y=0的圓心M交橢圓于A、B兩點,且A、B關于點M對稱,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1滿足(z1-2)(1+i)=1-i(i為虛數(shù)單位),復數(shù)z2的模為2
5
,且z1•z2是實數(shù),求z2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列
y=
3
(x-1)
x2+y2=1
滿足a1=1an+1-an=
1
2n
(n∈N*)

(1)求數(shù)列{an}的通項公式;
(2)令bn=nan,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x2-3x+3)ex,x∈[-2,t](t>-2).
(1)當t<1時,求函數(shù)y=f(x)的單調區(qū)間;
(2)函數(shù)g(x)=f(x)+(x-2)ex,是否存在這樣的實數(shù)a,b(b>a>1),使得x∈[a,b]時,函數(shù)y=g(x)的值域為[a,b],存在請求出,不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是正方形,且PD=AB=2.
(1)求PB的長;
(2)求證:AC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{1,2,3,…,n}∪A={1,2,3,…,m},n<m,這樣的A有
 
個.

查看答案和解析>>

同步練習冊答案