【題目】過點P(3,2)且在兩坐標軸上的截距相等的直線方程是(
A.x﹣y﹣1=0
B.x+y﹣5=0或2x﹣3y=0
C.x+y﹣5=0
D.x﹣y﹣1=0或2x﹣3y=0

【答案】B
【解析】解:當橫截距a=0時,縱截距b=a=0,

此時直線方程過點P(3,2)和原點(0,0),

直線方程為: ,整理,得2x﹣3y=0;

當橫截距a≠0時,縱截距b=a,

此時直線方程為 ,

把P(3,2)代入,得: ,解得a=5,

∴直線方程為 ,即x+y﹣5=0.

∴過點P(3,2)且在兩坐標軸上的截距相等的直線方程是x+y﹣5=0或2x﹣3y=0.

故選:B.

當橫截距a=0時,縱截距b=a=0,此時直線方程過點P(3,2)和原點(0,0;當橫截距a≠0時,縱截距b=a,此時直線方程為 .由此能求出結果.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2 ,PD=CD=2,則二面角A﹣PB﹣C的正切值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣3mx+n(m>0)的兩個零點分別為1和2.
(1)求m、n的值;
(2)若不等式f(x)﹣k>0在x∈[0,5]恒成立,求k的取值范圍.
(3)令 ,若函數(shù)F(x)=g(2x)﹣r2x在x∈[﹣1,1]上有零點,求實數(shù)r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨機抽取某中學甲乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖.
(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;
(2)計算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=1﹣ 為定義在R上的奇函數(shù).
(1)試判斷函數(shù)的單調(diào)性,并用定義加以證明;
(2)若關于x的方程f(x)=m在[﹣1,1]上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,定義在[﹣2,2]的偶函數(shù)f(x)的圖象如圖所示,則方程f(f(x))=0的實根個數(shù)為(
A.3
B.4
C.5
D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若x,y滿足 且z=y﹣x的最小值為﹣4,則k的值為(
A.2
B.﹣2
C.
D.﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩個平面垂直,下列命題: ①一個平面內(nèi)的已知直線必垂直于另一個平面內(nèi)的任意一條直線.
②一個平面內(nèi)的已知直線必垂直于另一個平面內(nèi)的無數(shù)條直線.
③一個平面內(nèi)的任一條直線必垂直于另一個平面.
④一個平面內(nèi)垂直于交線的直線與另一個平面垂直.
其中正確命題的個數(shù)是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若正實數(shù)a,b滿足a+b=1,則(
A. 有最大值4
B.ab有最小值
C. 有最大值
D.a2+b2有最小值

查看答案和解析>>

同步練習冊答案