【題目】設(shè)橢圓的方程為+=1(a>b>0),右焦點(diǎn)為F(c,0)(c>0),方程ax2+bx-c=0的兩實(shí)根分別為x1,x2,則P(x1,x2)( )
A.必在圓x2+y2=2內(nèi)
B.必在圓x2+y2=2外
C.必在圓x2+y2=1外
D.必在圓x2+y2=1與圓x2+y2=2形成的圓環(huán)之間
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線,曲線為參數(shù)), 以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)若射線分別交于兩點(diǎn), 求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的兩個焦點(diǎn)分別為,且橢圓經(jīng)過點(diǎn).
(1)求橢圓的離心率;
(2)過點(diǎn)的直線與橢圓相交于兩點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體ABCDA1B1C1D1中,AB=AA1=1,E為BC中點(diǎn).
(1)求證:C1D⊥D1E;
(2)在棱AA1上是否存在一點(diǎn)M,使得BM∥平面AD1E?若存在,求的值,若不存在,說明理由;
(3)若二面角B1AED1的大小為90°,求AD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方.
(1)求圓C的方程;
(2)過點(diǎn)M(1,0)的直線與圓C交于A,B兩點(diǎn)(A在x軸上方),問在x軸正半軸上是否存在定點(diǎn)N,使得x軸平分∠ANB?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C的中心在原點(diǎn),其一個焦點(diǎn)與拋物線y2=4x的焦點(diǎn)相同,又橢圓C上有一點(diǎn)M(2,1),直線l平行于OM且與橢圓C交于A,B兩點(diǎn),連接MA,MB.
(1)求橢圓C的方程;
(2)當(dāng)MA,MB與x軸所構(gòu)成的三角形是以x軸上所在線段為底邊的等腰三角形時,求直線l在y軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F(1,0),拋物線E:x2=2py的焦點(diǎn)為M.
(1)若過點(diǎn)M的直線l與拋物線C有且只有一個交點(diǎn),求直線l的方程;
(2)若直線MF與拋物線C交于A,B兩點(diǎn),求△OAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某制藥廠生產(chǎn)某種顆粒狀粉劑,由醫(yī)藥代表負(fù)責(zé)推銷,若每包藥品的生產(chǎn)成本為元,推銷費(fèi)用為元,預(yù)計(jì)當(dāng)每包藥品銷售價為元時,一年的市場銷售量為萬包,若從民生考慮,每包藥品的售價不得高于生產(chǎn)成本的,但為了鼓勵藥品研發(fā),每包藥品的售價又不得低于生產(chǎn)成本的
(1) 寫出該藥品一年的利潤 (萬元)與每包售價的函數(shù)關(guān)系式,并指出其定義域;
(2) 當(dāng)每包藥品售價為多少元時,年利潤最大,最大值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每逢節(jié)假日,在微信好友群中發(fā)紅包逐漸成為一種時尚,還能增進(jìn)彼此的感情,2016年春節(jié)期間,小魯在自己的微信好友群中,向在線的甲、乙、丙、丁四位好友隨機(jī)發(fā)放紅包,發(fā)放的規(guī)則為:每次發(fā)放一個,小魯自己不搶,每個人搶到的概率相同.
(1)若小魯隨機(jī)發(fā)放了3個紅包,求甲至少搶到一個紅包的概率;
(2)若丁因有事暫時離線一段時間,而小魯在這段時間內(nèi)共發(fā)了3個紅包,其中2個紅包中各有10元,一個紅包中有5元.設(shè)這段時間內(nèi)乙所得紅包的總錢數(shù)為元,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com