【題目】201910月,工信部頒發(fā)了國(guó)內(nèi)首個(gè)無線電通信設(shè)備進(jìn)網(wǎng)許可證,標(biāo)志著基站設(shè)備將正式接入公用電信商用網(wǎng)絡(luò).手機(jī)生產(chǎn)商擬升級(jí)設(shè)備生產(chǎn)手機(jī),有兩種方案可供選擇,方案1:直接引進(jìn)手機(jī)生產(chǎn)設(shè)備;方案2:對(duì)已有的手機(jī)生產(chǎn)設(shè)備進(jìn)行技術(shù)改造,升級(jí)到手機(jī)生產(chǎn)設(shè)備.該生產(chǎn)商對(duì)未來手機(jī)銷售市場(chǎng)行情及回報(bào)率進(jìn)行大數(shù)據(jù)模擬,得到如下統(tǒng)計(jì)表:

市場(chǎng)銷售狀態(tài)

暢銷

平銷

滯銷

市場(chǎng)銷售狀態(tài)概率

預(yù)期年利潤(rùn)數(shù)值(單位:億元)

方案1

70

40

-40

方案2

60

30

-10

1)以預(yù)期年利潤(rùn)的期望值為依據(jù),求的取值范圍,討論該生產(chǎn)商應(yīng)該選擇哪種方案進(jìn)行設(shè)備升級(jí)?

2)設(shè)該生產(chǎn)商升級(jí)設(shè)備后生產(chǎn)的手機(jī)年產(chǎn)量為萬部,通過大數(shù)據(jù)模擬核算,選擇方案1所生產(chǎn)的手機(jī)年度總成本(億元),選擇方案2所生產(chǎn)的手機(jī)年度總成為(億元).已知,當(dāng)所生產(chǎn)的手機(jī)市場(chǎng)行情為暢銷、平銷和滯銷時(shí),每部手機(jī)銷售單價(jià)分別為0.8萬元,(萬元),(萬元),根據(jù)(1)的決策,求該生產(chǎn)商所生產(chǎn)的手機(jī)年利潤(rùn)期望的最大值?并判斷這個(gè)年利潤(rùn)期望的最大值能否達(dá)到預(yù)期年利潤(rùn)數(shù)值.

【答案】1;選擇方案見解析(2)最大值40億元;這個(gè)年利潤(rùn)期望的最大值可以達(dá)到預(yù)期年利潤(rùn)數(shù)值

【解析】

1)根據(jù)概率的性質(zhì)可得的取值范圍,根據(jù)期望公式求出兩種方案下的期望,再通過對(duì)進(jìn)行討論可得答案;

2)根據(jù)可知選擇方案1,利用期望公式求出手機(jī)生產(chǎn)商年銷售額的期望,接著求出年利潤(rùn)期望值的最大值,再與方案1的預(yù)期平均年利潤(rùn)期望值進(jìn)行比較可得答案.

1)由,可得的取值范圍為.

方案1的預(yù)期平均年利潤(rùn)期望值為

億元.

方案2的預(yù)期平均年利潤(rùn)期望值為

億元.

當(dāng)時(shí),,該手機(jī)生產(chǎn)商應(yīng)該選擇方案1;

當(dāng)時(shí),,該手機(jī)生產(chǎn)商可以選擇方案1,也可以以選擇方案2;

當(dāng)時(shí),,該手機(jī)生產(chǎn)商應(yīng)該選擇方案2

2)因?yàn)?/span>,該手機(jī)生產(chǎn)商將選擇方案1,此時(shí)生產(chǎn)的手機(jī)的年度總成本為(億元).

設(shè)市場(chǎng)行情為暢銷、平銷和滯銷時(shí)的年銷售額分別為,(億元),

那么,.

因?yàn)?/span>,所以手機(jī)生產(chǎn)商年銷售額的分布列為

0.4

0.4

0.2

所以

.

年利潤(rùn)期望值(億元).

當(dāng)時(shí),年利潤(rùn)期望取得最大值40億元.

方案1的預(yù)期平均年利潤(rùn)期望值為(億元).

因?yàn)?/span>,因此這個(gè)年利潤(rùn)期望的最大值可以達(dá)到預(yù)期年利潤(rùn)數(shù)值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明在某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前54單沒有獎(jiǎng)勵(lì),超過54單的部分每單獎(jiǎng)勵(lì)20元.

(1)請(qǐng)分別求出甲、乙兩種薪酬方案中日薪y(單位:元)與送貨單數(shù)n的函數(shù)關(guān)系式;

(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標(biāo)滿足如圖所示的直方圖,其中當(dāng)某天的派送量指標(biāo)在時(shí),日平均派送量為單.若將頻率視為概率,回答下列問題:

①估計(jì)這100天中的派送量指標(biāo)的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)

根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為(單位:元),試分別求出甲、乙兩種方案的日薪的分布列及數(shù)學(xué)期望. 請(qǐng)利用數(shù)學(xué)期望幫助小明分析他選擇哪種薪酬方案比較合適?并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市《城市總體規(guī)劃(年)》提出到2035年實(shí)現(xiàn)“15分鐘社區(qū)生活圈全覆蓋的目標(biāo),從教育與文化、醫(yī)療與養(yǎng)老、交通與購(gòu)物、休閑與健身4個(gè)方面構(gòu)建“15分鐘社區(qū)生活圈指標(biāo)體系,并依據(jù)“15分鐘社區(qū)生活圈指數(shù)高低將小區(qū)劃分為:優(yōu)質(zhì)小區(qū)(指數(shù)為、良好小區(qū)(指數(shù)為0.4-0.63、中等小區(qū)(指數(shù)為0.2~0.4)以及待改進(jìn)小區(qū)(指數(shù)為0-0.2)4個(gè)等級(jí).下面是三個(gè)小區(qū)4個(gè)方面指標(biāo)值的調(diào)查數(shù)據(jù):

注:每個(gè)小區(qū)”15分鐘社區(qū)生活圈指數(shù)其中、、、為該小區(qū)四個(gè)方面的權(quán)重,為該小區(qū)四個(gè)方面的指標(biāo)值(小區(qū)每一個(gè)方面的指標(biāo)值為之間的一個(gè)數(shù)值)

現(xiàn)有100個(gè)小區(qū)的“15分鐘社區(qū)生活圈指數(shù)數(shù)據(jù),整理得到如下頻數(shù)分布表:

1)分別判斷AB、C三個(gè)小區(qū)是否是優(yōu)質(zhì)小區(qū),并說明理由;

2)對(duì)這100個(gè)小區(qū)按照優(yōu)質(zhì)小區(qū)、良好小區(qū)、中等小區(qū)和待改進(jìn)小區(qū)進(jìn)行分層抽樣,抽取10個(gè)小區(qū)進(jìn)行調(diào)查,若在抽取的10個(gè)小區(qū)中再隨機(jī)地選取2個(gè)小區(qū)做深入調(diào)查,記這2個(gè)小區(qū)中為優(yōu)質(zhì)小區(qū)的個(gè)數(shù)為ζ,求ζ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省確定從2021年開始,高考采用的模式,取消文理分科,即“3”包括語文、數(shù)學(xué)、外語,為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學(xué)、地理、政治中選擇兩門,共計(jì)六門考試科目.某高中從高一年級(jí)2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查.

1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);

2)學(xué)校計(jì)劃在高二上學(xué)期開設(shè)選修中的物理歷史兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問卷調(diào)杳(假定每名學(xué)生在這兩個(gè)科目中必須洗擇一個(gè)科目且只能選擇一個(gè)科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;

性別

選擇物理

選擇歷史

總計(jì)

男生

50

女生

30

總計(jì)

3)在(2)的條件下,從抽取的選擇物理的學(xué)生中按分層抽樣抽取6人,再?gòu)倪@6名學(xué)生中抽取2人,對(duì)物理的選課意向作深入了解,求2人中至少有1名女生的概率.

附:,其中.

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求的單調(diào)區(qū)間;

2)證明:(i;

ii)對(duì)任意對(duì)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省高考改革方案指出:該省高考考生總成績(jī)將由語文數(shù)學(xué)英語3門統(tǒng)一高考成績(jī)和學(xué)生從思想政治、歷史、地理、物理、化學(xué)、生物6門等級(jí)性考試科目中自主選擇3個(gè),按獲得該次考試有效成績(jī)的考生(缺考考生或未得分的考生除外)總?cè)藬?shù)的相應(yīng)比例的基礎(chǔ)上劃分等級(jí),位次由高到低分為A、B、C、D、E五等21級(jí),該省的某市為了解本市萬名學(xué)生的某次選考化學(xué)成績(jī)水平,統(tǒng)計(jì)在全市范圍內(nèi)選考化學(xué)的原始成績(jī),發(fā)現(xiàn)其成績(jī)服從正態(tài)分布 ,現(xiàn)從某校隨機(jī)抽取了名學(xué)生,將所得成績(jī)整理后,繪制出如圖所示的頻率分布直方圖.

(1)估算該校名學(xué)生成績(jī)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)現(xiàn)從該校名考生成績(jī)?cè)?/span>的學(xué)生中隨機(jī)抽取兩人,該兩人成績(jī)排名(從高到低)在全市前名的人數(shù)記為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.參考數(shù)據(jù):若,則,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】萬眾矚目的第14屆全國(guó)冬季運(yùn)動(dòng)運(yùn)會(huì)(簡(jiǎn)稱“十四冬”)于2020216日在呼倫貝爾市盛大開幕,期間正值我市學(xué)校放寒假,寒假結(jié)束后,某校工會(huì)對(duì)全校100名教職工在“十四冬”期間每天收看比賽轉(zhuǎn)播的時(shí)間作了一次調(diào)查,得到如圖頻數(shù)分布直方圖:

1)若將每天收看比賽轉(zhuǎn)播時(shí)間不低于3小時(shí)的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請(qǐng)根據(jù)頻率分布直方圖補(bǔ)全列聯(lián)表;并判斷能否有的把握認(rèn)為該校教職工是否為“冰雪迷”與“性別”有關(guān);

2)在全校“冰雪迷”中按性別分層抽樣抽取6名,再?gòu)倪@6名“冰雪迷”中選取2名作冰雪運(yùn)動(dòng)知識(shí)講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) =2.718………),

(I) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(II)當(dāng)時(shí),不等式對(duì)任意恒成立,

求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明和父母都喜愛《中國(guó)好聲音》這欄節(jié)目,日晚在鳥巢進(jìn)行中國(guó)好聲音終極決賽,四強(qiáng)選手分別為李榮浩戰(zhàn)隊(duì)的邢晗銘,那英戰(zhàn)隊(duì)的斯丹曼簇,王力宏戰(zhàn)隊(duì)的李芷婷,庾澄慶戰(zhàn)隊(duì)的陳其楠,決賽后四位選手相應(yīng)的名次為、、、,某網(wǎng)站為提升娛樂性,邀請(qǐng)網(wǎng)友在比賽結(jié)束前對(duì)選手名次進(jìn)行預(yù)測(cè).現(xiàn)用、、表示某網(wǎng)友對(duì)實(shí)際名次為、、、的四位選手名次做出的一種等可能的預(yù)測(cè)排列,是該網(wǎng)友預(yù)測(cè)的名次與真實(shí)名次的偏離程度的一種描述.

1)求的分布列及數(shù)學(xué)期望;

2)按(1)中的結(jié)果,若小明家三人的排序號(hào)與真實(shí)名次的偏離程度都是,計(jì)算出現(xiàn)這種情況的概率(假定小明家每個(gè)人排序相互獨(dú)立).

查看答案和解析>>

同步練習(xí)冊(cè)答案