已知直線l交橢圓4x25y280M,N兩點(diǎn),橢圓與y軸的正半軸交于B點(diǎn),若BMN的重心恰好落在橢圓的右焦點(diǎn)上,則直線l的方程是( )

A6x5y280 B6x5y280

C5x6y280 D5x6y280

 

A

【解析】設(shè)M(x1,y1),N(x2y2,)B(0,4),F(2,0),由重心坐標(biāo)得2,0,所以弦MN的中點(diǎn)為(3,-2).因?yàn)辄c(diǎn)M(x1,y1)N(x2,y2)在橢圓上,所以,作差得

4(x1x2)(x1x2)5(y1y2)(y1y2)0,將代入得k1,所以,直線l為:y2(x3)6x5y280

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練5練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)exln(xm)

(1)設(shè)x0f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;

(2)當(dāng)m≤2時(shí),證明f(x)>0.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練2練習(xí)卷(解析版) 題型:選擇題

函數(shù)f(x)xsin x在區(qū)間[0,2π]上的零點(diǎn)個(gè)數(shù)為(  )

A1 B2 C3 D4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)7-2隨機(jī)變量及其分布練習(xí)卷(解析版) 題型:填空題

隨機(jī)變量ξ的分布列如下:

ξ

1

0

1

P

a

b

c

其中a,b,c成等差數(shù)列.若,則的值是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)6-2橢圓、雙曲線、拋物線練習(xí)卷(解析版) 題型:解答題

已知橢圓C1(ab0)的離心率為,其左、右焦點(diǎn)分別是F1F2,過點(diǎn)F1的直線l交橢圓CEG兩點(diǎn),且EGF2的周長(zhǎng)為4.

(1)求橢圓C的方程;

(2)若過點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A、B,設(shè)P為橢圓上一點(diǎn),且滿足t (O為坐標(biāo)原點(diǎn)),當(dāng)||時(shí),求實(shí)數(shù)t的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)6-1直線與圓練習(xí)卷(解析版) 題型:解答題

已知以點(diǎn)C (tR,t≠0)為圓心的圓與x軸交于點(diǎn)OA,與y軸交于點(diǎn)OB,其中O為原點(diǎn).

(1)求證:AOB的面積為定值;

(2)設(shè)直線2xy40與圓C交于點(diǎn)M、N,若|OM||ON|,求圓C的方程;

(3)(2)的條件下,設(shè)P、Q分別是直線lxy20和圓C的動(dòng)點(diǎn),求|PB||PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)6-1直線與圓練習(xí)卷(解析版) 題型:選擇題

過點(diǎn)A(1,-1),B(1,1),且圓心在直線xy20上的圓的方程是 ( )

A(x3)2(y1)24 B(x3)2(y1)24

C(x1)2(y1)24 D(x1)2(y1)24

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)5-1空間幾何體與點(diǎn)等練習(xí)卷(解析版) 題型:選擇題

如圖,在正方形ABCD中,EF分別是BC、CD的中點(diǎn),ACEFG.現(xiàn)在沿AE、EF、FA把這個(gè)正方形折成一個(gè)四面體,使BC、D三點(diǎn)重合,重合后的點(diǎn)記為P,則在四面體PAEF中必有(  )

 

AAP⊥△PEF所在平面

BAG⊥△PEF所在平面

CEP⊥△AEF所在平面

DPG⊥△AEF所在平面

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)3-1三角函數(shù)與三角恒等變換練習(xí)卷(解析版) 題型:選擇題

已知銳角AB滿足2tan Atan(AB),則tan B的最大值為(  )

A2 B. C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案