函數(shù)f(x)=x-sin x在區(qū)間[0,2π]上的零點(diǎn)個(gè)數(shù)為( ).
A.1 B.2 C.3 D.4
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練x4-1練習(xí)卷(解析版) 題型:解答題
如圖,過圓O外一點(diǎn)M作它的一條切線,切點(diǎn)為A,過A點(diǎn)作直線AP垂直直線OM,垂足為P.
(1)證明:OM·OP=OA2;
(2)N為線段AP上一點(diǎn),直線NB垂直直線ON,且交圓O于B點(diǎn).過B點(diǎn)的切線交直線ON于K.證明:∠OKM=90°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練4練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=ax2-(2a+1)x+2ln x,a∈R.
(1)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2)求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練3練習(xí)卷(解析版) 題型:選擇題
在平面直角坐標(biāo)系xOy中,M為不等式組所表示的區(qū)域上一動點(diǎn),則直線OM斜率的最小值為( ).
A.2 B.1 C.- D.-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練2練習(xí)卷(解析版) 題型:填空題
我們把形如y= (a>0,b>0)的函數(shù)因其圖象類似于漢字中的“囧”字,故生動地稱為“囧函數(shù)”,若當(dāng)a=1,b=1時(shí)的“囧函數(shù)”與函數(shù)y=lg|x|的交點(diǎn)個(gè)數(shù)為n,則n=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練1練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=loga(x+1)(a>1),若函數(shù)y=g(x)的圖象上任意一點(diǎn)P關(guān)于原點(diǎn)對稱的點(diǎn)Q的軌跡恰好是函數(shù)f(x)的圖象.
(1)寫出函數(shù)g(x)的解析式;
(2)當(dāng)x∈[0,1)時(shí)總有f(x)+g(x)≥m成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練1練習(xí)卷(解析版) 題型:選擇題
設(shè)函數(shù)f(x)=若f(a)+f(-1)=2,則a等于( ).
A.-3 B.±3 C.-1 D.±1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)6-2橢圓、雙曲線、拋物線練習(xí)卷(解析版) 題型:選擇題
已知直線l交橢圓4x2+5y2=80于M,N兩點(diǎn),橢圓與y軸的正半軸交于B點(diǎn),若△BMN的重心恰好落在橢圓的右焦點(diǎn)上,則直線l的方程是( ).
A.6x-5y-28=0 B.6x+5y-28=0
C.5x+6y-28=0 D.5x-6y-28=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)4-2數(shù)列求和與數(shù)列的綜合應(yīng)用練習(xí)卷(解析版) 題型:選擇題
已知{an}為等比數(shù)列,a4+a7=2,a2·a9=-8,則a1+a10= ( ).
A.7 B.5 C.-5 D.-7
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com