17.已知sin(α+$\frac{π}{3}$)=sinα,則tanα=( 。
A.$\frac{\sqrt{3}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

分析 運(yùn)用兩角和的正弦公式和同角的商數(shù)關(guān)系,計(jì)算即可得到所求值.

解答 解:sin(α+$\frac{π}{3}$)=sinα,
即$\frac{1}{2}$sinα+$\frac{\sqrt{3}}{2}$cosα=sinα,
即有$\frac{1}{2}$sinα-$\frac{\sqrt{3}}{2}$cosα=0,
則tanα=$\frac{sinα}{cosα}$=$\sqrt{3}$.
故選:D.

點(diǎn)評 本題考查三角函數(shù)的求值,注意運(yùn)用兩角和的正弦公式和同角基本關(guān)系式,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓A:(x+1)2+y2=8,動圓M經(jīng)過點(diǎn)B(1,0),且與圓A相切,O為坐標(biāo)原點(diǎn).
(Ⅰ)求動圓圓心M的軌跡C的方程;
(Ⅱ)直線l與曲線C相切于點(diǎn)M,且l與x軸、y軸分別交于P、Q兩點(diǎn),若$\overrightarrow{PM}$=λ$\overrightarrow{MQ}$,且λ∈[$\frac{1}{2}$,2],求△OPQ面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖所示,△A′O′B′表示水平放置△AOB的直觀圖,B′在x′軸上,A′O′和x′軸垂直,且A′O′=8,則△AOB的邊OB上的高為16$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,四棱錐P-ABCD的底面ABCD是正方形,分E,F(xiàn),G別為PD,AB,CD的中點(diǎn),PD⊥平面ABCD
(1)證明AC⊥PB
(2)證明:平面PBC∥平面EFG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.下列4個(gè)命題中假命題的是①②④(寫上對應(yīng)的程序號)
①若p∨q為真命題,p∧q為假命題,則q為假命題
②命題“如果$\sqrt{x-1}$=2,則(x+1)(x-5)=0”的否命題是真命題
③“方程x2+x+m=0有實(shí)數(shù)根”是“m<$\frac{1}{4}$”的必要不充分條件
④命題p:?x∈R,x+$\frac{1}{x}$<2的否定為¬p:?x∉R,x+$\frac{1}{x}$≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知冪函數(shù)f(x)=(m-1)2x${\;}^{{m}^{2}-3m+2}$在(0,+∞)上單調(diào)遞增,函數(shù)g(x)=2x+k,當(dāng)x∈(1,2]時(shí),記f(x)和g(x)的值域分別為A和B,若B⊆A∩B,則實(shí)數(shù)k的取值范圍是[-1,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3+2a7+3a15-a17=3,則S17=$\frac{51}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合 A={-2,-1,0,2,3},B={y|y=|x|,x∈A},則A∩B=( 。
A.{0,1,2,3}B.{2,3}C.{0,1,2}D.{0,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線l1:(m-2)x-y+5=0與l2:(m-2)x+(3-m)y+2=0平行,則實(shí)數(shù)m的值為(  )
A.2或4B.1或4C.1或2D.4

查看答案和解析>>

同步練習(xí)冊答案