2.圓x2+2x+y2=0關(guān)于y軸對稱的圓的一般方程是x2+y2-2x=0(或(x-1)2+y2=1).

分析 求出圓心關(guān)于y軸的對稱點(diǎn)的坐標(biāo),可得已知圓關(guān)于y軸對稱的圓的方程.

解答 解:圓x2+y2+2x=0,即(x+1)2+y2 =1,由于圓心(-1,0)關(guān)于y軸對稱的點(diǎn)為(1,0),
故圓x2+y2+2x=0關(guān)于y軸對稱的圓的方程為 (x-1)2+y2 =1,即 x2+y2-2x=0,
故答案為:x2+y2-2x=0(或(x-1)2+y2=1).

點(diǎn)評 本題主要考查直線和圓的位置關(guān)系,求一個(gè)圓關(guān)于直線的對稱圓的方程的方法,關(guān)鍵是求出圓心關(guān)于直線的對稱點(diǎn)的坐標(biāo),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.“sin(α+β)=sinα+sinβ”是“α=0,β=0”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若sinx=-$\frac{{\sqrt{2}}}{2}$,則cos2x=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-m(x>0)}\\{-{x}^{2}-2mx(x≤0)}\end{array}\right.$,若函數(shù)g(x)=f(x)-m恰有3個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,$\frac{1}{2}$)B.(-∞,1)C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在數(shù)列{an}中,a1=2,an=an-1+ln(1+$\frac{1}{n-1}$)(n≥2)則{an}=( 。
A.2+nlnnB.2+(n-1)lnnC.2+lnnD.1+n+lnn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)的定義域?yàn)閇-1,5],則函數(shù)f(2x+1)的定義域?yàn)椋ā 。?table class="qanwser">A.[-1,11]B.[-1,5]C.[-1,2]D.[-2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.一個(gè)正方體的棱長為2,則該正方體的內(nèi)切球的體積為$\frac{4π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow m=({\sqrt{3}sin2x+2,cosx}),\overrightarrow n=({1,2cosx})$,設(shè)函數(shù)f(x)=$\overrightarrow m•\overrightarrow n$.
(1)求f(x)在$[{0,\frac{π}{4}}]$上的最值;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,若f(A)=4,b=1,△ABC的面積為$\frac{{\sqrt{3}}}{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥1}\\{y≥-1}\\{4x+y≤9}\\{x+y≤3}\end{array}\right.$,記z=mx+y,若z的最大值為f(m),則當(dāng)m∈[2,4]時(shí),f(m)最大值和最小值之和為(  )
A.4B.10C.13D.14

查看答案和解析>>

同步練習(xí)冊答案