(2012•泰安二模)下列命題中的真命題是( 。
分析:選項(xiàng)A應(yīng)把sinx+cosx化積求值域;B選項(xiàng)可取特值排除,C命題可用冪函數(shù)的單調(diào)性;D分析較為困難,可建立輔助函數(shù),求導(dǎo)分析單調(diào)性解決.
解答:解:由sinx+cosx=
2
sin(x+
π
4
)
,最大值為
2
小于
3
2
 x不存在∴A不正確;
B選項(xiàng)(特值)可取x=
π
4
,sin
π
4
=cos
π
4
,∴不是全部都符合,排除B.
C選項(xiàng),?x∈(-∞,0),x一旦選定就是一個(gè)具體值,運(yùn)用冪函數(shù)在冪指數(shù)小于0時(shí)為減函數(shù),都有2x>3x,排除C.
D選項(xiàng)分析:可令輔助函數(shù) y=ex-x-1,y′=ex-1,當(dāng)x∈(0,+∞)時(shí)恒大于0,∴函數(shù)f(x)=ex-x-1在0,∞)上位增函數(shù),∴f(x)>0,即ex-x-1>0,即ex>x+1.得到結(jié)論正確.
故選D
點(diǎn)評(píng):對(duì)于全稱命題和特稱命題排除法是解決的常用方法,全稱可以舉反例驗(yàn)證,或者結(jié)合已知條件證明出來(lái)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•泰安二模)設(shè)f(x)是周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=2x(1-x),則f(-
5
2
)
=
-
1
2
-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•泰安二模)在△ABC中,∠BAC=60°,AB=2,AC=1,E,F(xiàn)為邊BC的三等分點(diǎn),則
AE
AF
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•泰安二模)已知A,B,C,D,E是函數(shù)y=sin(ωx+?)(ω>0,0<?<
π
2
)
一個(gè)周期內(nèi)的圖象上的五個(gè)點(diǎn),如圖所示,A(-
π
6
,0)
,B為y軸上的點(diǎn),C為圖象上的最低點(diǎn),E為該函數(shù)圖象的一個(gè)對(duì)稱中心,B與D關(guān)于點(diǎn)E對(duì)稱,
CD
在x軸上的投影為
π
12
,則ω,?的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•泰安二模)已知f(x)=(
1
2
)x-log3x
,實(shí)數(shù)a、b、c滿足f(a)f(b)f(c)<0,且0<a<b<c,若實(shí)數(shù)x0是函數(shù)f(x)的一個(gè)零點(diǎn),那么下列不等式中,不可能成立的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案