【題目】在平面直角坐標(biāo)系中,已知橢圓:(,)的右焦點(diǎn),且橢圓過(guò)點(diǎn).
(1)求橢圓的方程;
(2)設(shè)動(dòng)直線(xiàn)與橢圓交于,兩點(diǎn),,,且的面積.
①求證:為定值;
②設(shè)直線(xiàn)的中點(diǎn),求的最大值.
【答案】(1)(2)①證明見(jiàn)解析;②.
【解析】
(1)由題意可得,,求得后即可得解;
(2)①當(dāng)直線(xiàn)斜率不存在時(shí)易得,當(dāng)直線(xiàn)斜率存在時(shí),設(shè)直線(xiàn)方程為,可得、、、,由可得,再利用化簡(jiǎn)即可得證;
②當(dāng)直線(xiàn)的斜率不存在時(shí),易得;當(dāng)直線(xiàn)斜率存在時(shí),設(shè)直線(xiàn)方程為,表示出、后,再利用基本不等式化簡(jiǎn)即可得解.
(1)橢圓右焦點(diǎn)為,且橢圓過(guò)點(diǎn),
,,,
橢圓方程為.
(2)①證明:當(dāng)直線(xiàn)斜率不存在時(shí),設(shè)直線(xiàn)方程為,則,,
易知,,,
解得,此時(shí).
當(dāng)直線(xiàn)斜率存在時(shí),設(shè)直線(xiàn)方程為,
聯(lián)立方程得,消去得,
,
,,
,,
,
又 原點(diǎn)到直線(xiàn)的距離,
,
化簡(jiǎn)得,解得,
.
綜上,為定值7.
②當(dāng)直線(xiàn)的斜率不存在時(shí),由①知,,
此時(shí);
當(dāng)直線(xiàn)斜率存在時(shí),設(shè)直線(xiàn)方程為,由①知,
,,
,
即,
,
,
當(dāng)且僅當(dāng)即時(shí)等號(hào)成立,
當(dāng)直線(xiàn)斜率存在時(shí),.
又,
的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)與拋物線(xiàn)相交于兩點(diǎn),為坐標(biāo)原點(diǎn),直線(xiàn)與軸相交于點(diǎn),且.
(1)求證:;
(2)求點(diǎn)的橫坐標(biāo);
(3)過(guò)點(diǎn)分別作拋物線(xiàn)的切線(xiàn),兩條切線(xiàn)交于點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某養(yǎng)殖場(chǎng)需要通過(guò)某裝置對(duì)養(yǎng)殖車(chē)間進(jìn)行恒溫控制,為了解日用電量與日平均氣溫(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某5天的用電量與當(dāng)天平均氣溫,并制作了對(duì)照表:
日平均氣溫(℃) | 3 | 4 | 5 | 6 | 7 |
日用電量() | 2.5 | 3 | 4 | 4.5 | 6 |
(Ⅰ)求關(guān)于的線(xiàn)性回歸方程;
(Ⅱ)請(qǐng)利用(Ⅰ)中的線(xiàn)性回歸方程預(yù)測(cè)日平均氣溫為12℃時(shí)的日用電量.
附:回歸直線(xiàn)的斜率和截距的最小二乘法估計(jì)公式分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓C:的右準(zhǔn)線(xiàn)方程為x=4,右頂點(diǎn)為A,上頂點(diǎn)為B,右焦點(diǎn)為F,斜率為2的直線(xiàn)l經(jīng)過(guò)點(diǎn)A,且點(diǎn)F到直線(xiàn)l的距離為.
(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)將直線(xiàn)l繞點(diǎn)A旋轉(zhuǎn),它與橢圓C相交于另一點(diǎn)P,當(dāng)B,F,P三點(diǎn)共線(xiàn)時(shí),試確定直線(xiàn)l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由于近幾年我國(guó)多地區(qū)的霧霾天氣,引起口罩熱銷(xiāo),某廠(chǎng)家擬在2017年舉行促銷(xiāo)活動(dòng),經(jīng)調(diào)查該批口罩銷(xiāo)售量萬(wàn)件(生產(chǎn)量與銷(xiāo)售量相等)與促銷(xiāo)費(fèi)用萬(wàn)元滿(mǎn)足(其中,為常數(shù)).已知生產(chǎn)該批口罩還要投入成本萬(wàn)元(不包含促銷(xiāo)費(fèi)用),口罩的銷(xiāo)售價(jià)格定為元/件.
(1)將該批口罩的利潤(rùn)萬(wàn)元表示為促銷(xiāo)費(fèi)用萬(wàn)元的函數(shù);
(2)當(dāng)促銷(xiāo)費(fèi)用投入多少萬(wàn)元時(shí),該廠(chǎng)家的利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足 (k∈R).
(1)求k和數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿(mǎn)足bn=,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司推廣線(xiàn)下分店,計(jì)劃在S市的A區(qū)開(kāi)設(shè)分店,為了確定在該區(qū)開(kāi)設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開(kāi)設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開(kāi)設(shè)分店的個(gè)數(shù),y表示這個(gè)x個(gè)分店的年收入之和.
(1)該公司已經(jīng)過(guò)初步判斷,可用線(xiàn)性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線(xiàn)性回歸方程
(2)假設(shè)該公司在A區(qū)獲得的總年利潤(rùn)z(單位:百萬(wàn)元)與x,y之間的關(guān)系為,請(qǐng)結(jié)合(1)中的線(xiàn)性回歸方程,估算該公司應(yīng)在A區(qū)開(kāi)設(shè)多少個(gè)分店時(shí),才能使A區(qū)平均每個(gè)分店的年利潤(rùn)最大?
(參考公式:,其中,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,,,,.
(1)求證:平面;
(2)在棱上是否存在點(diǎn),使得平面?若存在,確定點(diǎn)的位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐P﹣ABCD中,ADBC,BC⊥CD,BC=CD=2AD=2,PD=,側(cè)面PBC是等邊三角形.
(1)證明:PA⊥平面PBC;
(2)求BC與平面PCD所成角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com