【題目】我國(guó)南宋時(shí)期的著名數(shù)學(xué)家秦九韶在他的著作《數(shù)學(xué)九章》中提出了秦九韶算法來(lái)計(jì)算多項(xiàng)式的值,在執(zhí)行如圖算法的程序框圖時(shí),若輸入的n=5,x=2,則輸出V的值為(
A.15
B.31
C.63
D.127

【答案】C
【解析】解:∵輸入的x=2,n=5, 故v=1,
i=4,v=1×2+1=3
i=3,v=3×2+1=7
i=2,v=7×2+1=15
i=1,v=15×2+1=31
i=0,v=31×2+1=63
i=﹣1,跳出循環(huán),輸出v的值為63,
故選:C
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解程序框圖的相關(guān)知識(shí),掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說(shuō)明來(lái)準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說(shuō)明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:,直線L:.

⑴ 求證:對(duì),直線L與圓C總有兩個(gè)交點(diǎn);

⑵ 求直線L與圓C截得的線段的最短長(zhǎng)度,以及此時(shí)直線L的方程;;

⑶ 設(shè)直線L與圓C交于A、B兩點(diǎn)若︱AB︱=,求L的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一圓臺(tái)上底半徑為5cm,下底半徑為10cm,母線AB長(zhǎng)為20cm,其中A在上底面上,B在下底面上,從AB中點(diǎn)M,拉一條繩子,繞圓臺(tái)的側(cè)面一周轉(zhuǎn)到B點(diǎn),則這條繩子最短長(zhǎng)為 cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·上海)如圖,圓錐的頂點(diǎn)為P,底面的一條直徑為AB,C為半圓弧AB的中點(diǎn),E為劣弧CB的中點(diǎn). 已知PO=2,OA=1,求三棱錐P-AOC的體積,并求異面直線PA與OE所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中AA1=AD=1,E為CD中點(diǎn).
(Ⅰ)求證:B1E⊥AD1
(Ⅱ)在棱AA1上是否存在一點(diǎn)P,使得DP∥平面B1AE?若存在,求AP的長(zhǎng);若不存在,說(shuō)明理由.
(Ⅲ)若二面角A﹣B1E﹣A1的大小為30°,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,若F(x)=f[f(x)+1]+m有兩個(gè)零點(diǎn)x1 , x2 , 則x1x2的取值范圍是(
A.[4﹣2ln2,+∞)
B.( ,+∞)
C.(﹣∞,4﹣2ln2]
D.(﹣∞,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是偶函數(shù),且.

(1)當(dāng)時(shí),求函數(shù)的值域;

(2)設(shè)R,求函數(shù)的最小值

(3)對(duì)(2)中的,若不等式對(duì)于任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)證明:當(dāng)時(shí),方程在區(qū)間上只有一個(gè)解;

(3)設(shè),其中.若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣2|+|2x+1|.
(Ⅰ)解不等式f(x)>5;
(Ⅱ)若關(guān)于x的方程 =a的解集為空集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案