【題目】①在同一坐標(biāo)系中,的圖象關(guān)于軸對稱

②函數(shù)是奇函數(shù)

③函數(shù)的圖象關(guān)于成中心對稱

④函數(shù)的最大值為

以上四個(gè)判斷正確有_____________.(寫上序號)

【答案】①②③

【解析】

①通過換底公式得到由圖象對稱可判斷正誤;②利用函數(shù)的奇偶性的定義判斷即可;③通過的對稱性與函數(shù)的平移變換即可判斷;④通過復(fù)合函數(shù)的性質(zhì)以及最值判斷正誤即可.

對于①由于,則在同一坐標(biāo)系中,的圖象關(guān)于軸對稱,故①正確;

對于②函數(shù)的定義域,函數(shù)是奇函數(shù),故②正確;

對于③,的對稱中心函數(shù),向左平移2個(gè)單位,向上平移1個(gè)單位,得到的圖象對稱中心,所以函數(shù)的圖象關(guān)于成中心對稱,故③正確;

對于④,函數(shù)是偶函數(shù),時(shí),函數(shù)是減函數(shù),時(shí),函數(shù)是增函數(shù),時(shí)函數(shù)取得的最小值為,故④錯(cuò)誤,故答案為①②③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓上一動(dòng)點(diǎn),過點(diǎn)軸,垂足為點(diǎn),中點(diǎn)為

1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;

Ⅱ)過點(diǎn)的直線交于兩點(diǎn),當(dāng)時(shí),求線段的垂直平分線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓,離心率,短軸,拋物線頂點(diǎn)在原點(diǎn),以坐標(biāo)軸為對稱軸,焦點(diǎn)為,

(1)求橢圓和拋物線的方程;

(2)設(shè)坐標(biāo)原點(diǎn)為,為拋物線上第一象限內(nèi)的點(diǎn),為橢圓是一點(diǎn),且有,當(dāng)線段的中點(diǎn)在軸上時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求的單調(diào)區(qū)間;

(2)證明:只有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2cosθ.

1)若曲線C1方程中的參數(shù)是α,且C1C2有且只有一個(gè)公共點(diǎn),求C1的普通方程;

2)已知點(diǎn)A0,1),若曲線C1方程中的參數(shù)是t0απ,且C1C2相交于PQ兩個(gè)不同點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程: 為參數(shù)),曲線的參數(shù)方程: 為參數(shù)),且直線交曲線兩點(diǎn).

(1)將曲線的參數(shù)方程化為普通方程,并求時(shí), 的長度;

(2)巳知點(diǎn),求當(dāng)直線傾斜角變化時(shí), 的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時(shí)全修好;單位對學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個(gè)大致統(tǒng)計(jì),具體數(shù)據(jù)如表:

損壞餐椅數(shù)

未損壞餐椅數(shù)

計(jì)

學(xué)習(xí)雷鋒精神前

50

150

200

學(xué)習(xí)雷鋒精神后

30

170

200

計(jì)

80

320

400

求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?

請說明是否有以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神

有關(guān)?參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】個(gè)相同的小球放到三個(gè)編號為的盒子中,且每個(gè)盒子內(nèi)的小球數(shù)要多于盒子的編號數(shù),則共有多少種放法( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中中,曲線的參數(shù)方程為為參數(shù), ). 以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

(1)設(shè)是曲線上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)到直線的距離的最大值;

(2)若曲線上所有的點(diǎn)均在直線的右下方,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案