【題目】已知函數(shù).
(1)若函數(shù),求的極值;
(2)證明:.
(參考數(shù)據(jù): )
【答案】(1)見(jiàn)解析;(2)見(jiàn)證明
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(2)問(wèn)題轉(zhuǎn)化為證ex﹣x2﹣xlnx﹣1>0,根據(jù)xlnx≤x(x﹣1),問(wèn)題轉(zhuǎn)化為只需證明當(dāng)x>0時(shí),ex﹣2x2+x﹣1>0恒成立,令k(x)=ex﹣2x2+x﹣1,(x≥0),根據(jù)函數(shù)的單調(diào)性證明即可.
(1),,當(dāng),,
當(dāng),,在上遞增,在上遞減,在取得極大值,極大值為,無(wú)極大值.
(2)要證f(x)+1<ex﹣x2.
即證ex﹣x2﹣xlnx﹣1>0,
先證明lnx≤x﹣1,取h(x)=lnx﹣x+1,則h′(x)=,
易知h(x)在(0,1)遞增,在(1,+∞)遞減,
故h(x)≤h(1)=0,即lnx≤x﹣1,當(dāng)且僅當(dāng)x=1時(shí)取“=”,
故xlnx≤x(x﹣1),ex﹣x2﹣xlnx≥ex﹣2x2+x﹣1,
故只需證明當(dāng)x>0時(shí),ex﹣2x2+x﹣1>0恒成立,
令k(x)=ex﹣2x2+x﹣1,(x≥0),則k′(x)=ex﹣4x+1,
令F(x)=k′(x),則F′(x)=ex﹣4,令F′(x)=0,解得:x=2ln2,
∵F′(x)遞增,故x∈(0,2ln2]時(shí),F′(x)≤0,F(x)遞減,即k′(x)遞減,
x∈(2ln2,+∞)時(shí),F′(x)>0,F(x)遞增,即k′(x)遞增,
且k′(2ln2)=5﹣8ln2<0,k′(0)=2>0,k′(2)=e2﹣8+1>0,
由零點(diǎn)存在定理,可知x1∈(0,2ln2),x2∈(2ln2,2),使得k′(x1)=k′(x2)=0,
故0<x<x1或x>x2時(shí),k′(x)>0,k(x)遞增,當(dāng)x1<x<x2時(shí),k′(x)<0,k(x)遞減,故k(x)的最小值是k(0)=0或k(x2),由k′(x2)=0,得=4x2﹣1,
k(x2)=﹣2+x2﹣1=﹣(x2﹣2)(2x2﹣1),∵x2∈(2ln2,2),∴k(x2)>0,
故x>0時(shí),k(x)>0,原不等式成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】擎天柱為了防止魔方落入霸天虎手中,打算用激光刀將其銷毀.擎天柱使用的方法是:每次切割可將魔方分成兩個(gè)體積之比為的六面體,每個(gè)六面體恰包含魔方的一個(gè)面,且任兩次操作得到的截面在魔方中均有交點(diǎn),而魔方的屬性決定每次切割只能暫時(shí)將它割開(kāi),而無(wú)法分離,且只要它有的小正方體區(qū)域始終未被割到,就無(wú)法被銷毀,證明:無(wú)論擎天柱切割多少次,均無(wú)法銷毀魔方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為支援武漢的防疫,某醫(yī)院職工踴躍報(bào)名,其中報(bào)名的醫(yī)生18人,護(hù)士12人,醫(yī)技6人,根據(jù)需要,從中抽取一個(gè)容量為n的樣本參加救援隊(duì),若采用系統(tǒng)抽樣和分層抽樣,均不用剔除人員.當(dāng)抽取n+1人時(shí),若采用系統(tǒng)抽樣,則需剔除1個(gè)報(bào)名人員,則抽取的救援人員為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為計(jì)算, 設(shè)計(jì)了如圖所示的程序框圖,則空白框中應(yīng)填入( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年,新冠狀肺炎疫情牽動(dòng)每一個(gè)中國(guó)人的心,危難時(shí)刻眾志成城,共克時(shí)艱,為疫區(qū)助力.福建省漳州市東山縣共101個(gè)海鮮商家及個(gè)人為緩解武漢物質(zhì)壓力,募捐價(jià)值百萬(wàn)的海鮮輸送武漢.東山島,別稱陵島,形似蝴蝶亦稱蝶島,隸屬于福建省漳州市東山縣,是福建省第二大島,中國(guó)第七大島,介于廈門市和廣東省汕頭之間,東南是著名的閩南漁場(chǎng)和粵東漁場(chǎng)交匯處,因地理位置發(fā)展海產(chǎn)品養(yǎng)殖業(yè)具有得天獨(dú)厚的優(yōu)勢(shì).根據(jù)養(yǎng)殖規(guī)模與以往的養(yǎng)殖經(jīng)驗(yàn),某海鮮商家的海產(chǎn)品每只質(zhì)量(克)在正常環(huán)境下服從正態(tài)分布.
(1)隨機(jī)購(gòu)買10只該商家的海產(chǎn)品,求至少買到一只質(zhì)量小于265克該海產(chǎn)品的概率;
(2)2020年該商家考慮增加先進(jìn)養(yǎng)殖技術(shù)投入,該商家欲預(yù)測(cè)先進(jìn)養(yǎng)殖技術(shù)投入為49千元時(shí)的年收益增量.現(xiàn)用以往的先進(jìn)養(yǎng)殖技術(shù)投入(千元)與年收益增量(千元).的數(shù)據(jù)繪制散點(diǎn)圖,由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線的附近,且,,其中.根據(jù)所給的統(tǒng)計(jì)量,求y關(guān)于x的回歸方程,并預(yù)測(cè)先進(jìn)養(yǎng)殖技術(shù)投入為49千元時(shí)的年收益增量.
附:若隨機(jī)變量,則;
對(duì)于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次數(shù)學(xué)競(jìng)賽中,某些選手是朋友關(guān)系.記所有選手的集合為X,對(duì)集合X的子集Y,若可以將這些人兩兩分組,且每組中兩名選手均是朋友關(guān)系,則稱子集Y“可兩兩分組”.已知集合X不可兩兩分組,且對(duì)于任意選手,若A、B不是朋友關(guān)系,則可兩兩分組,且X中沒(méi)有一個(gè)人與其他所有人均為朋友關(guān)系證明:對(duì)任意選手,若a、b為朋友關(guān)系,b、c為朋友關(guān)系,則a、c也為朋友關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)在2018年社保又出新的好消息,之前流動(dòng)就業(yè)人員跨地區(qū)就業(yè)后,社保轉(zhuǎn)移接續(xù)的手續(xù)往往比較繁瑣,費(fèi)時(shí)費(fèi)力.社保改革后將簡(jiǎn)化手續(xù),深得流動(dòng)就業(yè)人員的贊譽(yù).某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時(shí)間(天)與人數(shù)的頻數(shù)分布表:
時(shí)間 | ||||||
人數(shù) | 15 | 60 | 90 | 75 | 45 | 15 |
(1)若300名辦理社保的人員中流動(dòng)人員210人,非流動(dòng)人員90人,若辦理時(shí)間超過(guò)4天的人員里非流動(dòng)人員有60人,請(qǐng)完成辦理社保手續(xù)所需時(shí)間與是否流動(dòng)人員的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“辦理社保手續(xù)所需時(shí)間與是否流動(dòng)人員”有關(guān).
列聯(lián)表如下
流動(dòng)人員 | 非流動(dòng)人員 | 總計(jì) | |
辦理社保手續(xù)所需 時(shí)間不超過(guò)4天 | |||
辦理社保手續(xù)所需 時(shí)間超過(guò)4天 | 60 | ||
總計(jì) | 210 | 90 | 300 |
(2)為了改進(jìn)工作作風(fēng),提高效率,從抽取的300人中辦理時(shí)間為流動(dòng)人員中利用分層抽樣,抽取12名流動(dòng)人員召開(kāi)座談會(huì),其中3人要求交書(shū)面材料,3人中辦理的時(shí)間為的人數(shù)為,求出分布列及期望值.
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com