【題目】擎天柱為了防止魔方落入霸天虎手中,打算用激光刀將其銷(xiāo)毀.擎天柱使用的方法是:每次切割可將魔方分成兩個(gè)體積之比為的六面體,每個(gè)六面體恰包含魔方的一個(gè)面,且任兩次操作得到的截面在魔方中均有交點(diǎn),而魔方的屬性決定每次切割只能暫時(shí)將它割開(kāi),而無(wú)法分離,且只要它有的小正方體區(qū)域始終未被割到,就無(wú)法被銷(xiāo)毀,證明:無(wú)論擎天柱切割多少次,均無(wú)法銷(xiāo)毀魔方.

【答案】見(jiàn)解析

【解析】

顯然,每次切割得到的截面均為平行四邊形,關(guān)于其中心對(duì)稱(chēng).

由操作規(guī)則,知點(diǎn)在魔方一組對(duì)面的中心連線段上,且將該線段分成的兩段.

上述為定點(diǎn),且有6個(gè),分別記為、,其中,、關(guān)于魔方中心對(duì)稱(chēng),滿足操作要求的截面必過(guò)一個(gè)點(diǎn).

注意到,過(guò)、的平面將魔方分成體積相等的兩部分.分別過(guò),、的截面在直線,上的投影長(zhǎng)度均不超過(guò),且均不包含點(diǎn)(即每個(gè)截面均在魔方的一半中).

從而,兩截面在魔方內(nèi)部不相交.

從而,所有滿足操作要求的截面恰經(jīng)過(guò)中的三個(gè)點(diǎn)、,之一.

將上述截面分成三組,每組過(guò)一個(gè)點(diǎn).則每組截面均在魔方的一半中,即魔方中有的正方體區(qū)域未與上述任意一個(gè)截面相交,從而,無(wú)法銷(xiāo)毀魔方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊半徑為20米,圓心角的扇形展示臺(tái),展示臺(tái)分成了四個(gè)區(qū)域:三角形,弓形,扇形和扇形(其中.某次菊花展依次在這四個(gè)區(qū)域擺放:泥金香、紫龍臥雪、朱砂紅霜、朱砂紅霜.預(yù)計(jì)這三種菊花展示帶來(lái)的日效益分別是:泥金香50/,紫龍臥雪30/,朱砂紅霜40/.

1)設(shè),試建立日效益總量關(guān)于的函數(shù)關(guān)系式;

2)試探求為何值時(shí),日效益總量達(dá)到最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

已知曲線的極坐標(biāo)方程為,以極點(diǎn)為直角坐標(biāo)原點(diǎn),以極軸為軸的正半軸建立平面直角坐標(biāo)系,將曲線向左平移個(gè)單位長(zhǎng)度,再將得到的曲線上的每一個(gè)點(diǎn)的橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)保持不變,得到曲線

(1)求曲線的直角坐標(biāo)方程;

(2)已知直線的參數(shù)方程為,(為參數(shù)),點(diǎn)為曲線上的動(dòng)點(diǎn),求點(diǎn)到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司準(zhǔn)備上市一款新型轎車(chē)零配件,上市之前擬在其一個(gè)下屬4S店進(jìn)行連續(xù)30天的試銷(xiāo).定價(jià)為1000/.試銷(xiāo)結(jié)束后統(tǒng)計(jì)得到該4S店這30天內(nèi)的日銷(xiāo)售量(單位:件)的數(shù)據(jù)如下表:

日銷(xiāo)售量

40

60

80

100

頻數(shù)

9

12

6

3

1)若該4S店試銷(xiāo)期間每個(gè)零件的進(jìn)價(jià)為650/件,求試銷(xiāo)連續(xù)30天中該零件日銷(xiāo)售總利潤(rùn)不低于24500元的頻率;

2)試銷(xiāo)結(jié)束后,這款零件正式上市,每個(gè)定價(jià)仍為1000元,但生產(chǎn)公司對(duì)該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有60件,批發(fā)價(jià)為550/件;小箱每箱有45件,批發(fā)價(jià)為600/.4S店決定每天批發(fā)兩箱,根據(jù)公司規(guī)定,當(dāng)天沒(méi)銷(xiāo)售出的零件按批發(fā)價(jià)的9折轉(zhuǎn)給該公司的另一下屬4S.假設(shè)該4店試銷(xiāo)后的連續(xù)30天的日銷(xiāo)售量(單位:件)的數(shù)據(jù)如下表:

日銷(xiāo)售量

50

70

90

110

頻數(shù)

5

15

8

2

(。┰O(shè)該4S店試銷(xiāo)結(jié)束后連續(xù)30天每天批發(fā)兩大箱,這30天這款零件的總利潤(rùn);

(ⅱ)以總利潤(rùn)作為決策依據(jù),該4S店試銷(xiāo)結(jié)束后連續(xù)30天每天應(yīng)該批發(fā)兩大箱還是兩小箱?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代中的“禮、樂(lè)、射、御、書(shū)、數(shù)”合稱(chēng)“六藝”.“禮”,主要指德育;“樂(lè)”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書(shū)”,指各種歷史文化知識(shí);“數(shù)”,數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開(kāi)展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在前三節(jié),且“射”和“御”兩門(mén)課程相鄰排課,則“六藝”課程講座不同排課順序共有( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年寒假是特殊的寒假,因?yàn)榭箵粢咔槿w學(xué)生只能在家進(jìn)行網(wǎng)上在線學(xué)習(xí),為了研究學(xué)生在網(wǎng)上學(xué)習(xí)的情況,某學(xué)校在網(wǎng)上隨機(jī)抽取120名學(xué)生對(duì)線上教育進(jìn)行調(diào)查,其中男生與女生的人數(shù)之比為1113,其中男生30人對(duì)于線上教育滿意,女生中有15名表示對(duì)線上教育不滿意.

1)完成列聯(lián)表,并回答能否有99%的把握認(rèn)為對(duì)線上教育是否滿意與性別有關(guān);

滿意

不滿意

總計(jì)

男生

30

女生

15

合計(jì)

120

2)從被調(diào)查的對(duì)線上教育滿意的學(xué)生中,利用分層抽樣抽取8名學(xué)生,再在8名學(xué)生中抽取3名學(xué)生,作線上學(xué)習(xí)的經(jīng)驗(yàn)介紹,其中抽取男生的個(gè)數(shù)為,求出的分布列及期望值.

參考公式:附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

0.706

3.841

5.024

6.635

7.879

10828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰直角△內(nèi)接于拋物線(),其中為拋物線的頂點(diǎn),,△的面積是16.

1)求拋物線的方程;

2)拋物線的焦點(diǎn)為,過(guò)的直線交拋物線于兩點(diǎn),交軸于點(diǎn),若,,證明:是一個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某醫(yī)院為篩查某種疾病,需要檢驗(yàn)血液是否為陽(yáng)性,現(xiàn)有)份血液樣本,有以下兩種檢驗(yàn)方式:(1)逐份檢驗(yàn),則需要檢驗(yàn)次;(2)混合檢驗(yàn),將其中)份血液樣本分別取樣混合在一起檢驗(yàn).若檢驗(yàn)結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這份血液究竟哪幾份為陽(yáng)性,就要對(duì)這份再逐份檢驗(yàn),此時(shí)這份血液的檢驗(yàn)次數(shù)總共為次.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為

(1)假設(shè)有5份血液樣本,其中只有2份樣本為陽(yáng)性,若采用逐份檢驗(yàn)方式,求恰好經(jīng)過(guò)4次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)的概率.

(2)現(xiàn)取其中)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為

(。┰囘\(yùn)用概率統(tǒng)計(jì)的知識(shí),若 ,試求關(guān)于的函數(shù)關(guān)系式

(ⅱ)若,采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求的最大值.

參考數(shù)據(jù):,,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù),求的極值;

(2)證明:.

(參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案