【題目】如圖,有一塊半徑為20米,圓心角的扇形展示臺,展示臺分成了四個區(qū)域:三角形,弓形,扇形和扇形(其中).某次菊花展依次在這四個區(qū)域擺放:泥金香、紫龍臥雪、朱砂紅霜、朱砂紅霜.預(yù)計這三種菊花展示帶來的日效益分別是:泥金香50元/米,紫龍臥雪30元/米,朱砂紅霜40元/米.
(1)設(shè),試建立日效益總量關(guān)于的函數(shù)關(guān)系式;
(2)試探求為何值時,日效益總量達(dá)到最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為(為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求經(jīng)過橢圓右焦點且與直線垂直的直線的極坐標(biāo)方程;
(2)若為橢圓上任意-點,當(dāng)點到直線距離最小時,求點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年3月,各行各業(yè)開始復(fù)工復(fù)產(chǎn),生活逐步恢復(fù)常態(tài),某物流公司承擔(dān)從甲地到乙地的蔬菜運輸業(yè)務(wù).已知該公司統(tǒng)計了往年同期200天內(nèi)每天配送的蔬菜量X(40≤X<200,單位:件.注:蔬菜全部用統(tǒng)一規(guī)格的包裝箱包裝),并分組統(tǒng)計得到表格如表:
蔬菜量X | [40,80) | [80,120) | [120,160) | [160,200) |
天數(shù) | 25 | 50 | 100 | 25 |
若將頻率視為概率,試解答如下問題:
(1)該物流公司負(fù)責(zé)人決定隨機抽出3天的數(shù)據(jù)來分析配送的蔬菜量的情況,求這3天配送的蔬菜量中至多有2天小于120件的概率;
(2)該物流公司擬一次性租賃一批貨車專門運營從甲地到乙地的蔬菜運輸.已知一輛貨車每天只能運營一趟,每輛貨車每趟最多可裝載40件,滿載才發(fā)車,否則不發(fā)車.若發(fā)車,則每輛貨車每趟可獲利2000元;若未發(fā)車,則每輛貨車每天平均虧損400元.為使該物流公司此項業(yè)務(wù)的營業(yè)利潤最大,該物流公司應(yīng)一次性租賃幾輛貨車?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在其定義域內(nèi)有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是平面上由個點組成的點集.若在中任取四個點,均至少有一個點與其余三個點相連,則下面結(jié)論中正確的是______.
①中不存在與其他所有點相連的點;
②中至少有一個點與其余所有的點均相連;
③中至多有兩個點與其余的點不相連;
④中至多有兩個點與其余所有的點均相連.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在名學(xué)生中,已知任意三人中有兩人互相認(rèn)識,任意四人中有兩人互相不認(rèn)識,則的最大值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有大小、形狀完全相同的四個小球,分別寫有和、“諧”、“校”“園”四個字,有放回地從中任意摸出一個小球,直到“和”、“諧”兩個字都摸到就停止摸球,用隨機模擬的方法估計恰好在第三次停止摸球的概率。利用電腦隨機產(chǎn)生到之間取整數(shù)值的隨機數(shù),分別用,,,代表“和”、“諧”、“!薄ⅰ皥@”這四個字,以每三個隨機數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下組隨機數(shù):
由此可以估計,恰好第三次就停止摸球的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】擎天柱為了防止魔方落入霸天虎手中,打算用激光刀將其銷毀.擎天柱使用的方法是:每次切割可將魔方分成兩個體積之比為的六面體,每個六面體恰包含魔方的一個面,且任兩次操作得到的截面在魔方中均有交點,而魔方的屬性決定每次切割只能暫時將它割開,而無法分離,且只要它有的小正方體區(qū)域始終未被割到,就無法被銷毀,證明:無論擎天柱切割多少次,均無法銷毀魔方.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com