【題目】名學(xué)生中,已知任意三人中有兩人互相認識,任意四人中有兩人互相不認識,則的最大值為______.

【答案】8

【解析】

時滿足要求.

只需證明:.

首先證明以下兩種情形不可能出現(xiàn).

(1)若某學(xué)生至少認識6人,由拉姆塞定理,知這6人中存在3人要么互相認識,要么3人互相不認識.若為前者,則與這3人共有4人兩兩互相認識,這與已知矛盾;若為后者,這與已知3人中有兩人互相認識矛盾.

(2)若某學(xué)生至多認識人,則剩下至少4人均與不認識,從而,這4人兩兩認識,與已知矛盾.

其次,當時,(1)、(2)必有一種情形出現(xiàn),這是不可能的.

時,要使(1)、(2)均不出現(xiàn),只能每名學(xué)生恰認識其他5人,于是,這9人產(chǎn)生的朋友對(互相認識的對人)的數(shù)目為,矛盾.

綜上,的最大值為8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的折線圖為某小區(qū)小型超市今年1月份到5月份的營業(yè)額和支出數(shù)據(jù)(利潤=營業(yè)額-支出),根據(jù)折線圖,下列說法正確的是(

A.該超市這五個月中的營業(yè)額一直在增長;

B.該超市這五個月的利潤一直在增長;

C.該超市這五個月中五月份的利潤最高;

D.該超市這五個月中的營業(yè)額和支出呈正相關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某親子游戲結(jié)束時有一項抽獎活動,抽獎規(guī)則是:盒子里面共有4個小球,小球上分別寫有0,1,2,3的數(shù)字,小球除數(shù)字外其他完全相同,每對親子中,家長先從盒子中取出一個小球,記下數(shù)字后將小球放回,孩子再從盒子中取出一個小球,記下小球上數(shù)字將小球放回.抽獎活動的獎勵規(guī)則是:若取出的兩個小球上數(shù)字之積大于4,則獎勵飛機玩具一個;若取出的兩個小球上數(shù)字之積在區(qū)間上,則獎勵汽車玩具一個;若取出的兩個小球上數(shù)字之積小于1,則獎勵飲料一瓶.

1)求每對親子獲得飛機玩具的概率;

2)試比較每對親子獲得汽車玩具與獲得飲料的概率,哪個更大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊半徑為20米,圓心角的扇形展示臺,展示臺分成了四個區(qū)域:三角形,弓形,扇形和扇形(其中.某次菊花展依次在這四個區(qū)域擺放:泥金香、紫龍臥雪、朱砂紅霜、朱砂紅霜.預(yù)計這三種菊花展示帶來的日效益分別是:泥金香50/,紫龍臥雪30/,朱砂紅霜40/.

1)設(shè),試建立日效益總量關(guān)于的函數(shù)關(guān)系式;

2)試探求為何值時,日效益總量達到最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二年級共有800名學(xué)生參加了數(shù)學(xué)測驗(滿分150分),已知這800名學(xué)生的數(shù)學(xué)成績均不低于90分,將這800名學(xué)生的數(shù)學(xué)成績分組如:,,,,,得到的頻率分布直方圖如圖所示,則下列說法中正確的是( )

;②這800名學(xué)生中數(shù)學(xué)成績在110分以下的人數(shù)為160; ③這800名學(xué)生數(shù)學(xué)成績的中位數(shù)約為121.4;④這800名學(xué)生數(shù)學(xué)成績的平均數(shù)為125.

A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)今天是423日,某市未來六天的空氣質(zhì)量預(yù)報情況如下圖所示.該市有甲、乙、丙三人計劃在未來六天(424日~429日)內(nèi)選擇一天出游,甲只選擇空氣質(zhì)量為優(yōu)的一天出游,乙不選擇周一出游,丙不選擇明天出游,且甲與乙不選擇同一天出游,則這三人出游的不同方法數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點在橢圓上,為坐標原點,直線的斜率與直線的斜率乘積為.

(1)求橢圓的方程;

(2)不經(jīng)過點的直線)與橢圓交于兩點,關(guān)于原點的對稱點為(與點不重合),直線軸分別交于兩點,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

已知曲線的極坐標方程為,以極點為直角坐標原點,以極軸為軸的正半軸建立平面直角坐標系,將曲線向左平移個單位長度,再將得到的曲線上的每一個點的橫坐標縮短為原來的,縱坐標保持不變,得到曲線

(1)求曲線的直角坐標方程;

(2)已知直線的參數(shù)方程為,(為參數(shù)),點為曲線上的動點,求點到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等腰直角△內(nèi)接于拋物線(),其中為拋物線的頂點,,△的面積是16.

1)求拋物線的方程;

2)拋物線的焦點為,過的直線交拋物線于兩點,交軸于點,若,證明:是一個定值.

查看答案和解析>>

同步練習(xí)冊答案