【題目】如圖所示的折線圖為某小區(qū)小型超市今年1月份到5月份的營業(yè)額和支出數(shù)據(jù)(利潤=營業(yè)額-支出),根據(jù)折線圖,下列說法正確的是( )
A.該超市這五個月中的營業(yè)額一直在增長;
B.該超市這五個月的利潤一直在增長;
C.該超市這五個月中五月份的利潤最高;
D.該超市這五個月中的營業(yè)額和支出呈正相關(guān).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市移動公司為了提高服務(wù)質(zhì)量,決定對使用A,B兩種套餐的集團用戶進(jìn)行調(diào)查,準(zhǔn)備從本市個人數(shù)超過1000人的大集團和8個人數(shù)低于200人的小集團中隨機抽取若干個集團進(jìn)行調(diào)查,若一次抽取2個集團,全是小集團的概率為.
求n的值;
若取出的2個集團是同一類集團,求全為大集團的概率;
若一次抽取4個集團,假設(shè)取出小集團的個數(shù)為X,求X的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為(為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求經(jīng)過橢圓右焦點且與直線垂直的直線的極坐標(biāo)方程;
(2)若為橢圓上任意-點,當(dāng)點到直線距離最小時,求點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾,調(diào)查結(jié)果如下面的2×2列聯(lián)表.
“非體育迷” | “體育迷” | 總計 | |
男 | 30 | 15 | 45 |
女 | 45 | 10 | 55 |
總計 | 75 | 25 | 100 |
(1)據(jù)此資料判斷是否有90%的把握認(rèn)為“體育迷”與性別有關(guān).
(2)將日均收看該體育項目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”共有5人,其中女性2名,男性3名,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓周上有個白點,先將其中一個染為黑色(稱為第一次染色),對任何正整數(shù),第次染色后按逆時針方向間隔個點將下個點染成與原來顏色相反的顏色(稱為第次染色).
(1)對給定正整數(shù),是否存在正整數(shù),使次染色后個點均為白色?
(2)對給定正整數(shù),是否存在正整數(shù),使次染色后個點均為黑色?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年3月,各行各業(yè)開始復(fù)工復(fù)產(chǎn),生活逐步恢復(fù)常態(tài),某物流公司承擔(dān)從甲地到乙地的蔬菜運輸業(yè)務(wù).已知該公司統(tǒng)計了往年同期200天內(nèi)每天配送的蔬菜量X(40≤X<200,單位:件.注:蔬菜全部用統(tǒng)一規(guī)格的包裝箱包裝),并分組統(tǒng)計得到表格如表:
蔬菜量X | [40,80) | [80,120) | [120,160) | [160,200) |
天數(shù) | 25 | 50 | 100 | 25 |
若將頻率視為概率,試解答如下問題:
(1)該物流公司負(fù)責(zé)人決定隨機抽出3天的數(shù)據(jù)來分析配送的蔬菜量的情況,求這3天配送的蔬菜量中至多有2天小于120件的概率;
(2)該物流公司擬一次性租賃一批貨車專門運營從甲地到乙地的蔬菜運輸.已知一輛貨車每天只能運營一趟,每輛貨車每趟最多可裝載40件,滿載才發(fā)車,否則不發(fā)車.若發(fā)車,則每輛貨車每趟可獲利2000元;若未發(fā)車,則每輛貨車每天平均虧損400元.為使該物流公司此項業(yè)務(wù)的營業(yè)利潤最大,該物流公司應(yīng)一次性租賃幾輛貨車?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在名學(xué)生中,已知任意三人中有兩人互相認(rèn)識,任意四人中有兩人互相不認(rèn)識,則的最大值為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com