【題目】已知函數(shù)

(1)判斷的單調(diào)性;

(2)若函數(shù)存在極值,求這些極值的和的取值范圍.

【答案】(1)見解析;(2)

【解析】

1)求出導函數(shù),對),用判別式進行分類討論,以確定的零點與符號,從而確定的單調(diào)區(qū)間;

2)題意說明上有解,且在解的兩側(cè)符號相反.

(1)因為,所以,令

,即時,恒成立,此時

所以函數(shù)上為減函數(shù);,即時,有不相等的兩根,

設為),則,

時,,

此時,所以函數(shù)上為減函數(shù);

時,,此時,所以函數(shù)上為增函數(shù).

(2)對函數(shù)求導得. 因為存在極值,

所以上有解,即方程上有解,

.顯然當時,無極值,不合題意,

所以方程必有兩個不等正根.

設方程的兩個不等正根分別為,則,

由題意知

,

即這些極值的和的取值范圍為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】“黃梅時節(jié)家家雨”“梅雨如煙暝村樹”“梅雨暫收斜照明”……江南梅雨的點點滴滴都流潤著濃烈的詩情.每年六、七月份,我國長江中下游地區(qū)進入持續(xù)25天左右的梅雨季節(jié),如圖是江南鎮(zhèn)2009~2018年梅雨季節(jié)的降雨量(單位:)的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:

“梅實初黃暮雨深”.請用樣本平均數(shù)估計鎮(zhèn)明年梅雨季節(jié)的降雨量;

“江南梅雨無限愁”.鎮(zhèn)的楊梅種植戶老李也在犯愁,他過去種植的甲品種楊梅,他過去種植的甲品種楊梅,畝產(chǎn)量受降雨量的影響較大(把握超過八成).而乙品種楊梅2009~2018年的畝產(chǎn)量(/畝)與降雨量的發(fā)生頻數(shù)(年)如列聯(lián)表所示(部分數(shù)據(jù)缺失).請你幫助老李排解憂愁,他來年應該種植哪個品種的楊梅受降雨量影響更小?

(完善列聯(lián)表,并說明理由).

畝產(chǎn)量\降雨量

合計

<600

2

1

合計

10

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.703

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三棱柱中,各棱長均為4, 分別是,的中點.

(1)求證:平面;

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),則滿足的實數(shù)的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,且,四邊形滿足,為側(cè)棱上的任意一點.

1)求證:平面平面.

2)是否存在點,使得直線與平面垂直?若存在,寫出證明過程并求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓的方程為,若直線上至少存在一點,使得以該點為圓心,1為半徑的圓與圓有公共點,則的最大值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三個點A2,1),B3,2),D(-1,4).

1)求證:;

2)要使四邊形ABCD為矩形,求點C的坐標,并求矩形ABCD兩對角線所夾銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設的交點為,當變化時, 的軌跡為曲線.

(1)寫出的普遍方程及參數(shù)方程;

(2)以坐標原點為極點, 軸正半軸為極軸建立極坐標系,設曲線的極坐標方程為, 為曲線上的動點,求點的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列的首項,該數(shù)列是公比為的等比數(shù)列.記.

(1)證明:當時,對一切,都有.

(2)當時,是否存在自然數(shù),使得對任何自然數(shù),都有?

查看答案和解析>>

同步練習冊答案