如圖,在空間四邊形中,分別是上的點,分別是上的點,且,求證:三條直線相交于同一點.
證明過程詳見試題解析.

試題分析:要證明三線共點,先證明兩條直線,再證明第三條直線也經(jīng)過點即可.
試題解析:連接EF、GH,因為
所以               2分
所以共面,且不平行,             3分
不妨設                                   4分
;         6分
           8分
又因為             10分[
所以三條直線相交于同一點O.           12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在棱長為2的正方體ABCD-A1B1C1D1中,E為棱CC1的中點。

(1)求證:BD⊥AE;
(2)求點A到平面BDE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐SABC中,平面SAB⊥平面SBCABBC,ASAB.過AAFSB,垂足為F,點E,G分別是棱SA,SC的中點.

求證:(1)平面EFG∥平面ABC;(2)BCSA.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在正方體中,

(1)求證:;
(2)求直線與直線BD所成的角

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知m和n是兩條不同的直線,α和β是兩個不重合的平面,那么下面給出的條件中一定能推出m⊥β的是( 。
A.α⊥β,且m?αB.m∥n,且n⊥β
C.α⊥β,且m∥αD.m⊥n,且n∥β

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知平面和直線,給出條件:
;②;③;④;⑤
(1)當滿足條件       時,有;(2)當滿足條件      時,有

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖是一正方體的表面展開圖,B、N、Q都是所在棱的中點,則在原正方體中,①AB與CD相交;②MN∥PQ;③AB∥PE;④MN與CD異面;⑤MN∥平面PQC.
其中真命題的是________(填序號).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知空間中有三條線段AB,BC和CD,且∠ABC=∠BCD,那么直線AB與CD的位置關系是(  )
A.AB∥CD
B.AB與CD異面
C.AB與CD相交
D.AB∥CD或AB與CD異面或AB與CD相交

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在長方形中,的中點,為線段(端點除外)上一動點,現(xiàn)將沿折起,使平面平面.在平面內(nèi)過點為垂足,設,則的取值范圍是________

查看答案和解析>>

同步練習冊答案