已知m和n是兩條不同的直線,α和β是兩個不重合的平面,那么下面給出的條件中一定能推出m⊥β的是( )
A.α⊥β,且m?α | B.m∥n,且n⊥β |
C.α⊥β,且m∥α | D.m⊥n,且n∥β |
α⊥β,且m?α⇒m?β,或m∥β,或m與β相交,故A不成立;
m∥n,且n⊥β⇒m⊥β,故B成立;
α⊥β,且m∥α⇒m?β,或m∥β,或m與β相交,故C不成立;
由m⊥n,且n∥β,知m⊥β不成立,故D不正確.
故選B.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
在正三棱柱ABC-A
1B
1C
1中,AB=AA
1,D、E分別是棱A
1B
1、AA
1的中點,點F在棱AB上,且
.
(1)求證:EF∥平面BDC
1;
(2)求證:
平面
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(2011•浙江)如圖,在三棱錐P﹣ABC中,AB=AC,D為BC的中點,PO⊥平面ABC,垂足O落在線段AD上,已知BC=8,PO=4,AO=3,OD=2
(1)證明:AP⊥BC;
(2)在線段AP上是否存在點M,使得二面角A﹣MC﹣β為直二面角?若存在,求出AM的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD是平行四邊形,且AC⊥CD,PA=AD,M,Q分別是PD,BC的中點.
(1)求證:MQ∥平面PAB;
(2)若AN⊥PC,垂足為N,求證:MN⊥PD.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐
中,
,
,
為正三角形,且平面
平面
.
(1)證明:
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐
中,底面
為矩形,
平面
,
,
,
是
中點,
為
上一點.
(1)求證:
平面
;
(2)當
為何值時,二面角
為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐
中,底面
為正方形,
平面
,已知
,
為線段
的中點.
(1)求證:
平面
;
(2)求二面角
的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且
底面ABCD,
,E是PA的中點.
(1)求證:平面
平面EBD;
(2)若PA=AB=2,求三棱錐P-EBD的高.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在空間四邊形
中,
分別是
和
上的點,
分別是
和
上的點,且
,求證:
三條直線相交于同一點.
查看答案和解析>>