【題目】如圖所示,在四棱柱中,側(cè)棱底面,平面,,,,為棱的中點.

1)證明:;

2)求二面角的平面角的正弦值;

3)設(shè)點在線段上,且直線與平面所成角的正弦值為,求線段的長.

【答案】1)證明見解析;(2;(3.

【解析】

1)以為原點,分別以,所在直線為軸,軸,軸建立空間直角坐標(biāo)系,計算出,可證明出;

2)計算出平面和平面的法向量、,然后利用空間向量法計算出二面角的余弦定理,利用同角三角函數(shù)的基本關(guān)系可得出其正弦值;

3)設(shè),計算出,利用空間向量法并結(jié)合條件直線與平面所成角的正弦值為,求出的值,即可求出.

1)如圖所示,以為原點,分別以,,所在直線為軸,軸,軸建立空間直角坐標(biāo)系,

依題意得,,,,.

易得,于是,所以;

2)易得.設(shè)平面的法向量為,,

,

消去,得,不妨取,可得法向量.

由(1)知,又,可得平面

為平面的一個法向量.

于是,從而,

故二面角的平面角的正弦值為;

3)易得.

設(shè),,則有,

可取為平面的一個法向量,

設(shè)為直線與平面所成的角,

,

于是舍去),則

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的一個側(cè)面為等邊三角形,且平面平面,四邊形是平行四邊形,.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中:

①若樣本數(shù)據(jù)的方差為16,則數(shù)據(jù)的方差為64;

②“平面向量夾角為銳角,則”的逆命題為真命題;

③命題“,”的否定是“,”;

④若:,,則的充分不必要條件.

真命題的個數(shù)序號_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面為菱形的四棱錐P-ABCD中,平面平面ABCD,為等腰直角三角形,,,點EF分別為BC,PD的中點,直線PC與平面AEF交于點Q.

(1)若平面平面,求證:.

(2)求直線AQ與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓C),,分別是橢圓C的左,右焦點,點D在橢圓上,且,的面積為.

1)求橢圓C的方程;

2)過的直線l與橢圓C交于M,N兩點,在x軸上是否存在點A,使為常數(shù)?若存在,求出點A的坐標(biāo)和這個常數(shù);若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為平行四邊形,平面平面是邊長為4的等邊三角形,的中點.

(1)求證:;

(2)若直線與平面所成角的正弦值為,求平面 與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為實數(shù))的圖像在點處的切線方程為.

(1)求實數(shù)的值及函數(shù)的單調(diào)區(qū)間;

(2)設(shè)函數(shù),證明時, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,討論的單調(diào)性;

(2)若,且對于函數(shù)的圖象上兩點 ,存在,使得函數(shù)的圖象在處的切線.求證;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),命題p:函數(shù)內(nèi)單調(diào)遞增;q:函數(shù)僅在處有極值.

1)若命題q是真命題,求a的取值范圍;

2)若命題是真命題,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案