【題目】在四棱錐中,底面為平行四邊形,平面平面,是邊長為4的等邊三角形,,是的中點(diǎn).
(1)求證:;
(2)若直線與平面所成角的正弦值為,求平面 與平面所成的銳二面角的余弦值.
【答案】(1)見證明;(2)
【解析】
(1)由面面垂直的性質(zhì)可得平面.可得 ,,結(jié)合得平面.由,可得,得到平面,從而可得結(jié)果;(2)根據(jù)直線與平面所成角的正弦值為,可求得, ,以,,所在的直線分別為,,軸,建立空間直角坐標(biāo)系,利用向量垂直數(shù)量積為零列方程求出平面的一個(gè)法向量,結(jié)合平面的一個(gè)法向量為,利用空間向量夾角余弦公式可得結(jié)果.
(1)因?yàn)?/span>是等邊三角形,是的中點(diǎn),
所以.
又平面平面,平面平面,平面,
所以平面.
所以,
又因?yàn)?/span>,,
所以平面.所以.
又因?yàn)?/span>,所以.
又且,平面,所以平面.
所以.
(2)
由(1)得平面.
所以就是直線與平面所成角.
因?yàn)橹本與平面所成角的正弦值為,即,所以.
所以,解得.則.
由(1)得,,兩兩垂直,所以以為原點(diǎn),,,所在的直線分別為,,軸,建立如圖所示的空間直角坐標(biāo)系,
則點(diǎn),, ,,
所以,.
令平面的法向量為,則
由得解得
令,可得平面的一個(gè)法向量為;
易知平面的一個(gè)法向量為,
設(shè)平面與平面所成的銳二面角的大小為,則.
所以平面與平面所成的銳二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題,;命題關(guān)于的方程有兩個(gè)相異實(shí)數(shù)根.
(1)若為真命題,求實(shí)數(shù)的取值范圍;
(2)若為真命題,為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐中,為等腰直角三角形,,設(shè)點(diǎn)為中點(diǎn),點(diǎn)為中點(diǎn),點(diǎn)為上一點(diǎn),且.
(1)證明:平面;
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:()上一點(diǎn)到焦點(diǎn)的距離為4.
(1)求拋物線C的方程;
(2)若,直線l:與拋物線C相交于A,B兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱柱中,側(cè)棱底面,平面,,,,,為棱的中點(diǎn).
(1)證明:;
(2)求二面角的平面角的正弦值;
(3)設(shè)點(diǎn)在線段上,且直線與平面所成角的正弦值為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的檢驗(yàn)員為了檢測生產(chǎn)線上生產(chǎn)零件的情況,從產(chǎn)品中隨機(jī)抽取了個(gè)進(jìn)行測量,根據(jù)所測量的數(shù)據(jù)畫出頻率分布直方圖如下:
如果:尺寸數(shù)據(jù)在內(nèi)的零件為合格品,頻率作為概率.
(1)從產(chǎn)品中隨機(jī)抽取件,合格品的個(gè)數(shù)為,求的分布列與期望:
(2)為了提高產(chǎn)品合格率,現(xiàn)提出,兩種不同的改進(jìn)方案進(jìn)行試驗(yàn),若按方案進(jìn)行試驗(yàn)后,隨機(jī)抽取件產(chǎn)品,不合格個(gè)數(shù)的期望是:若按方案試驗(yàn)后,抽取件產(chǎn)品,不合格個(gè)數(shù)的期望是,你會(huì)選擇哪個(gè)改進(jìn)方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信搶紅包”自2015年以來異;鸨,在某個(gè)微信群某次進(jìn)行的搶紅包活動(dòng)中,若所發(fā)紅包的總金額為10元,被隨機(jī)分配為1元,2.5元,3元,3.5元,共4份,供甲、乙等4人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于6元的概率是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,,平面PAB,,E為線段PB的中點(diǎn)
(1)證明:平面PDC;
(2)求直線DE與平面PDC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過其焦點(diǎn)的直線與拋物線相交于、兩點(diǎn),滿足.
(1)求拋物線的方程;
(2)已知點(diǎn)的坐標(biāo)為,記直線、的斜率分別為,,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com