【題目】微信搶紅包2015年以來異;鸨,在某個(gè)微信群某次進(jìn)行的搶紅包活動(dòng)中,若所發(fā)紅包的總金額為10元,被隨機(jī)分配為1元,2.5元,3元,3.5元,共4份,供甲、乙等4人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于6元的概率是__________.

【答案】

【解析】

根據(jù)題意,求出所有分配的可能,再求出滿足題意的可能,用古典概型的概率計(jì)算公式即可求得.

設(shè)搶紅包的四個(gè)人為甲乙丙丁,

表示,搶到1元,搶到2.5元,搶到元,搶到元;

4個(gè)人搶4個(gè)紅包,共有24種可能,具體如下:

,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,{,,,},,,,,

,,,,,,,,,,,,,,,,,,,,,,

要滿足題意,甲和乙搶到;甲和乙搶到3.5.

故只需從上述基本事件中找出甲和乙在最后兩個(gè)位置,

以及甲和乙在第二和第四個(gè)位置的事件即可,具體如下:

,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,

8種可能.

故滿足題意的概率.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù),且曲線處的切線與直線垂直.

(I)求函數(shù)在區(qū)間上的極大值;

(II)求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面為菱形的四棱錐P-ABCD中,平面平面ABCD,為等腰直角三角形,,,點(diǎn)EF分別為BC,PD的中點(diǎn),直線PC與平面AEF交于點(diǎn)Q.

(1)若平面平面,求證:.

(2)求直線AQ與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為平行四邊形,平面平面是邊長為4的等邊三角形,的中點(diǎn).

(1)求證:;

(2)若直線與平面所成角的正弦值為,求平面 與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為實(shí)數(shù))的圖像在點(diǎn)處的切線方程為.

(1)求實(shí)數(shù)的值及函數(shù)的單調(diào)區(qū)間;

(2)設(shè)函數(shù),證明時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一汽車廠生產(chǎn)三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號(hào),某月的產(chǎn)量如表(單位:輛):

轎車

轎車

轎車

舒適型

100

150

標(biāo)準(zhǔn)型

300

450

600

按分層抽樣的方法在這個(gè)月生產(chǎn)的轎車中抽取50輛,其中有類轎車10.

1)求的值;

2)用隨機(jī)抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測(cè)它們的得分如下:4、8.69.29.6、8.79.3、9.08.2,把這8輛轎車的得分看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過0.5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,討論的單調(diào)性;

(2)若,且對(duì)于函數(shù)的圖象上兩點(diǎn), ,存在,使得函數(shù)的圖象在處的切線.求證;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在單位正方體中,點(diǎn)在線段上運(yùn)動(dòng),給出以下三個(gè)命題:

①三棱錐的體積為定值; ②二面角的大小為定值;

③異面直線與直線所成的角為定值;

其中真命題有(

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】畫糖是一種以糖為材料在石板上進(jìn)行造型的民間藝術(shù),常見于公園與旅游景點(diǎn).某師傅制作了一種新造型糖畫,為了進(jìn)行合理定價(jià)先進(jìn)性試銷售,其單價(jià)(元)與銷量(個(gè))相關(guān)數(shù)據(jù)如下表:

(1)已知銷量與單價(jià)具有線性相關(guān)關(guān)系,求關(guān)于的線性相關(guān)方程;

(2)若該新造型糖畫每個(gè)的成本為元,要使得進(jìn)入售賣時(shí)利潤最大,請(qǐng)利用所求的線性相關(guān)關(guān)系確定單價(jià)應(yīng)該定為多少元?(結(jié)果保留到整數(shù))

參考公式:線性回歸方程中斜率和截距最小二乘法估計(jì)計(jì)算公式:

.參考數(shù)據(jù):.

查看答案和解析>>

同步練習(xí)冊(cè)答案