已知拋物線C:y2=x的焦點為F,A(x0,y0)是C上一點,|AF|=
5
4
x0,x0=( 。
A、1B、2C、4D、8
考點:拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:由拋物線的定義,可得|AF|=x0+
1
4
,結合條件,可求x0
解答: 解:由拋物線的定義,可得|AF|=x0+
1
4
,
∵|AF|=
5
4
x0,
∴x0+
1
4
=
5
4
x0,
∴x0=1,
故選:A.
點評:本題考查了拋物線的定義與簡單性質(zhì),屬于容易題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+mx-1,若對于任意x∈[m,m+1],都有f(x)<0成立,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在(1+x)6(1+y)4的展開式中,記xmyn項的系數(shù)為f(m,n),則f(3,0)+f(2,1)+f(1,2)+f(0,3)=(  )
A、45B、60
C、120D、210

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)為偶函數(shù)的是(  )
A、f(x)=x-1
B、f(x)=x2+x
C、f(x)=2x-2-x
D、f(x)=2x+2-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

擲兩顆均勻的骰子,則點數(shù)之和為5的概率等于( 。
A、
1
18
B、
1
9
C、
1
6
D、
1
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若變量x,y滿足約束條件
y≤x
x+y≤1
y≥-1
,且z=2x+y的最大值和最小值分別為m和n,則m-n=( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一塊石材表示的幾何體的三視圖如圖所示,將該石材切削、打磨,加工成球,則能得到的最大球的半徑等于( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為(
5
,0),離心率為
5
3

(1)求橢圓C的標準方程;
(2)若動點P(x0,y0)為橢圓C外一點,且點P到橢圓C的兩條切線相互垂直,求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=
1
2
AD,E,F(xiàn)分別為線段AD,PC的中點.
(Ⅰ)求證:AP∥平面BEF;
(Ⅱ)求證:BE⊥平面PAC.

查看答案和解析>>

同步練習冊答案