精英家教網 > 高中數學 > 題目詳情

設函數
(1)記的導函數,若不等式上有解,求實數的取值范圍;
(2)若,對任意的,不等式恒成立.求)的值.

(1);(2).

解析試題分析:(1)先利用不等式整理得,所以,設,用求導的方法求出;(2)設出函數,由題意可判斷遞增,所以恒成立,轉化為恒成立,下面只需求.
試題解析:(1)不等式,即為,
化簡得:,
,因而,設,

∵當,∴ 時成立.
由不等式有解,可得知,即實數的取值范圍是6分
(2)當,
恒成立,得恒成立,

由題意知,故當時函數單調遞增,
恒成立,即恒成立,
因此,記,得
∵函數在上單調遞增,在上單調遞減,
∴函數時取得極大值,并且這個極大值就是函數的最大值.由此可得
,故,結合已知條件,,可得.     12分
考點:1.恒成立問題;2.用導數判斷函數的單調性;3.用導數求函數的最值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題滿分13分)已知函數.
(1)若函數上單調遞增,求實數的取值范圍.
(2)記函數,若的最小值是,求函數的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1) 當時,求的單調區(qū)間;
(2) 若當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若處的切線方程;
(2)若在區(qū)間上恰有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數的單調區(qū)間;
(2)若在區(qū)間[0,2]上恒有,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為常數).
(1)當時,求的單調遞減區(qū)間;
(2)若,且對任意的,恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分15分)已知函數
(1)當時,求最小值;
(2)若存在單調遞減區(qū)間,求的取值范圍;
(3)求證:).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是實數,函數,,分別是的導函數,若在區(qū)間上恒成立,則稱在區(qū)間上單調性一致.
(Ⅰ)設,若函數在區(qū)間上單調性一致,求實數的取值范圍;
(Ⅱ)設,若函數在以為端點的開區(qū)間上單調性一致,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,
(1)若x=1時取得極值,求實數的值;
(2)當時,求上的最小值;
(3)若對任意,直線都不是曲線的切線,求實數的取值范圍。

查看答案和解析>>

同步練習冊答案