解方程:2|x-1|•(
1
2
)-|x-2|=2
2
考點:有理數(shù)指數(shù)冪的化簡求值
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)指數(shù)的運算性質(zhì)可將原方程化為|x-1|+|x-2|=
3
2
,進而利用零點分段法,可得答案.
解答: 解:方程:2|x-1|•(
1
2
)-|x-2|=2
2
可化為:
2|x-1|2|x-2|=2
3
2

2|x-1+|x-2|=2
3
2
,
即|x-1|+|x-2|=
3
2

當x<1時,原方程可化為-2x+3=
3
2
,解得:x=
3
4
,
當1≤x≤2時,原方程恒不成立,
當x>2時,原方程可化為2x-3=
3
2
,解得:x=
9
4

綜上所述原方程的解為:x=
3
4
,或x=
9
4
點評:本題考查的知識點是有理數(shù)指數(shù)冪的化簡與求值,絕對值方程的解法,難度中檔.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
3
2
,M是橢圓C上的一點,且點M到橢圓C兩焦點的距離之和為4.
(1)求橢圓C的方程;
(2)過橢圓C的左頂點A的直線l交橢圓于另一點B,P(0,t)是y軸上一點,滿足|PA|=|PB|,
PA
PB
=4,求實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)命題p:|4x-3|≤1,命題q:x2-(2a+1)x+a(a+1)≤0,若p是q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓M的圓心在x軸上,半徑為1,直線l:y=
4
3
x-
1
2
被圓M所截的弦長為
3
,且圓心M在直線l的下方.
(Ⅰ)求圓M的方程;
(Ⅱ)若線段PQ的端點P的坐標為(4,3),端點Q在圓M上運動,線段PQ上一點R滿足
PR
=2
RQ
,求R點軌跡方程.
(Ⅲ)設(shè)A(0,t),B(0,t+6),(-5≤t≤-2),若圓M是△ABC的內(nèi)切圓,求△ABC的面積S的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將函數(shù)y=sinx與函數(shù)y=cosx線性組合構(gòu)成的函數(shù)f(x)=msinx+ncosx(m,n是常數(shù))稱為“優(yōu)美函數(shù)”.
(Ⅰ)在△ABC中,a,b,c分別是角A,B,C的對邊,當m=
e
1
1
x
dx,n=|1+
2
i
|(i為虛數(shù)單位)時,
角A對應的“優(yōu)美函數(shù)”函數(shù)值f(A)=2,若a=2,c=
3
b,求△ABC的面積;
(Ⅱ)對于(Ⅰ)中的“優(yōu)美函數(shù)”f(x),若關(guān)于x的方程f(x)+log2k=0在區(qū)間[0,
π
2
]
上總有實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2,-1,3),
b
=(-4,2,x),若
a
b
,則x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x3在點(2,f(2))處切線的斜率為( 。
A、4B、8C、12D、48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(m2-4)x+(m2-4m+3)y+1=0表示直線,則( 。
A、m≠±2且m≠1,m≠3
B、m≠±2
C、m≠1且m≠3
D、m∈R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sin11°、cos10°、sin168°的大小關(guān)系是
 
.(用“<”連接)

查看答案和解析>>

同步練習冊答案