【題目】某種商品價(jià)格與該商品日需求量之間的幾組對(duì)照數(shù)據(jù)如下表:

(1)y關(guān)于x的線性回歸方程;

(2)利用(1)中的回歸方程當(dāng)價(jià)格x=40/kg時(shí)日需求量y的預(yù)測(cè)值為多少?

參考公式:線性回歸方程,其中,.

【答案】(1) y=﹣0.32x+14.4 (2) 日需求量y的預(yù)測(cè)值為1.6kg

【解析】試題分析:(1)根據(jù)回歸系數(shù)公式計(jì)算回歸系數(shù),得出回歸方程;

(2)把x=40,代入回歸方程解出y即可.

試題解析:

(1)由所給數(shù)據(jù)計(jì)算得,,,,

所求線性回歸方程為y=﹣0.32x+14.4.

(2)由(1)知當(dāng)x=40時(shí),y=﹣0.32×40+14.4=1.6,

故當(dāng)價(jià)格x=40元/kg時(shí),日需求量y的預(yù)測(cè)值為1.6kg.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線與拋物線交于,兩點(diǎn),與橢圓交于,兩點(diǎn),直線,,為坐標(biāo)原點(diǎn))的斜率分別為,,,,若.

(1)是否存在實(shí)數(shù),滿足,并說明理由;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】單位圓的內(nèi)接正n(n≥3)邊形的面積記為,則f(3)=_____; 下面是關(guān)于的描述:

其中正確結(jié)論的序號(hào)為__________.(注:請(qǐng)寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為 ,離心率為,且過點(diǎn)

)求橢圓的標(biāo)準(zhǔn)方程.

、是橢圓上的四個(gè)不同的點(diǎn),兩條都不和軸垂直的直線分別過點(diǎn) ,且這條直線互相垂直,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

1)判斷直線與曲線的位置關(guān)系,并說明理由;

2)若直線和曲線相交于兩點(diǎn),且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,則當(dāng)時(shí),討論的單調(diào)性;

(2)若,且當(dāng)時(shí),不等式在區(qū)間上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為:為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)曲線與直線交于兩點(diǎn),若點(diǎn)的坐標(biāo)為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)若直線與曲線交于,兩點(diǎn),且設(shè)定點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,分別為左,右焦點(diǎn),分別為左右頂點(diǎn),原點(diǎn)到直線的距離為.設(shè)點(diǎn)在第一象限,,連接交橢圓于點(diǎn).

(1)求橢圓的方程;

(2)若三角形的面積等于四邊形的面積,求直線的方程;

(3)求過點(diǎn)的圓方程(結(jié)果用表示.

查看答案和解析>>

同步練習(xí)冊(cè)答案