已知等比數(shù)列{an}的公比為q,且q<0,其中a1,3a3,a2成等差數(shù)列.
(Ⅰ)求q的值;
(Ⅱ)設(shè){bn}是以2為首項,q為公差的等差數(shù)列,其前n項和為Sn,求使Sn>0成立的最大正整數(shù)n.
考點:等比數(shù)列的性質(zhì)
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由a1,3a3,a2成等差數(shù)列知6a3=a1+a2,即6a1q2=a1+a1q,解方程可求q;
(Ⅱ)利用等差數(shù)列的求和公式可求Sn,令Sn>0可求n的范圍,結(jié)合n∈N*,即可得出結(jié)論.
解答: 解:(Ⅰ)由a1,3a3,a2成等差數(shù)列知6a3=a1+a2,
即6a1q2=a1+a1q,
所以6q2-q-1=0,
因為q<0,
所以q=-
1
3
;
(Ⅱ)Sn=2n+
n(n-1)
2
•(-
1
3
)
=
-n2+13n
6

所以-n2+13n>0,解得0<n<13,
所以滿足條件的最大值為n=12.
點評:本題主要考查了等差數(shù)列的性質(zhì),考查等差數(shù)列與等比數(shù)列的綜合應(yīng)用,等差數(shù)列的求和公式的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

《張丘建算經(jīng)》卷上第22題--“女子織布”問題:某女子善于織布,一天比一天織得快,而且每天增加的數(shù)量相同.已知第一天織布5尺,30天共織布390尺,則該女子織布每天增加( 。
A、
4
7
B、
16
29
C、
8
15
D、
16
31

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某教育主管部門到一所中學(xué)檢查學(xué)生的體質(zhì)健康情況.從全體學(xué)生中,隨機抽取12名進行體質(zhì)健康測試,測試成績(百分制)以莖葉圖形式表示如圖所示.根據(jù)學(xué)生體質(zhì)健康標準,成績不低于76的為優(yōu)良.
(Ⅰ)寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(Ⅱ)將頻率視為概率.根據(jù)樣本估計總體的思想,在該校學(xué)生中任選3人進行體質(zhì)健康測試,求至少有1人成績是“優(yōu)良”的概率;
(Ⅲ)從抽取的12人中隨機選取3人,記ξ表示成績“優(yōu)良”的學(xué)生人數(shù),求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(2
3
tan2x+1)cos2x+1-2sin2x,x∈[0,
π
2
].
(Ⅰ)求f(x)在[0,
π
2
]的單調(diào)區(qū)間;
(Ⅱ)若f(x)-m≥0對于任意x∈[0,
π
2
]恒成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

通常把大氣中直徑小于或等于2.5微米的顆粒物(也稱為可入肺顆粒物)稱為PM2.5.我國PM2.5標準采用世衛(wèi)組織設(shè)定的最寬限值,空氣質(zhì)量與PM2.5的關(guān)系如下表:
空氣質(zhì)量 一級 二級 超標
日均值(微克/立方米) 35以下 35~75 75以上
某城市環(huán)保局從該市城區(qū)2012年冬季每天的PM2.5監(jiān)測數(shù)據(jù)中隨機抽取15天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為莖,個位為葉).
(1)從這15天的PM2.5日均監(jiān)測數(shù)據(jù)中,隨機抽出三天數(shù)據(jù),求至少有一天空氣質(zhì)量達到一級的概率;
(2)從這15天的數(shù)據(jù)中任取三天的數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測數(shù)據(jù)超標的天數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一袋中裝有5個白球,3個紅球,現(xiàn)從袋中往外取球,每次取出一個,取出后記下球的顏色,然后放回,直到紅球出現(xiàn)10次停止,停止時取球的次數(shù) X是隨機變量,則P(X=12)=
 
(用式子作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)(x∈D)同時滿足下列條件:
①f(x)在D內(nèi)為單調(diào)函數(shù);
②f(x)的值域為D的子集,則稱此函數(shù)為D內(nèi)的“保值函數(shù)”.
(Ⅰ)f(x)=
2x+b-4
ln2
是[1,+∞)內(nèi)的“保值函數(shù)”,則b的最小值為
 

(Ⅱ)當-1≤a≤1,且a≠0,-1≤b≤1時,g(x)=ax2+b是[0,1]內(nèi)的“保值函數(shù)”的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項和為Sn,已知S4=8,S8=12,則a13+a14+a15+a16的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合 A={x|x2+x-2<0},B={-2,-1,0,1,2},則A∩B=( 。
A、{-2,-1,0,1}
B、{-1,0,1}
C、{0,1}
D、{-1,0}

查看答案和解析>>

同步練習(xí)冊答案