若冪函數(shù)f(x)的圖象過點(2,8),則( 。
A、f(x)=x3
B、f(x)=(2
2
)x
C、f(x)=log2x
D、f(x)=2x2
考點:冪函數(shù)的概念、解析式、定義域、值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)出冪函數(shù)的解析式,利用已知條件求解即可.
解答: 解:設(shè)所求冪函數(shù)為:f(x)=xa,
冪函數(shù)f(x)的圖象過點(2,8),
所以8=2a,解得a=3,
所求冪函數(shù)為:f(x)=x3
故選:A.
點評:本題看冪函數(shù)的解析式的求法,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若指數(shù)函數(shù)y=ax的圖象經(jīng)過點(3,8),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某食品廠定期購買面粉,已知該廠每天需要面粉6噸,每噸面粉的價格為1800元,面粉的保管為平均每天每噸3元,購面粉每次需支付運費900元.設(shè)該廠x(x∈N*)天購買一次面粉,平均每天所支付的總費用為y元.
(平均每天所支付的總費用=
所有的總費用
天數(shù)

(1)前三天面粉保管費用共多少元;
(2)求函數(shù)y關(guān)于x的表達式;
(3)求函數(shù)y最小值及此時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)Z滿足Z2+3=0,則Z3的值為( 。
A、±3
3
i
B、3
3
i
C、3
3
D、±3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算下列各式的值:
(1)log2
43×25
8
);
(2)lg2+lg5+lg30-lg3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高三年級有800名學(xué)生期中考試的數(shù)學(xué)成績有160人在120分以上(包括120分),480人在120以下90分以上(包括90分),其余的在90分以下,現(xiàn)欲從中抽出20人研討進一步改進數(shù)學(xué)教和學(xué)的座談;合適的抽樣方法應(yīng)為
 
.(填寫:系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,已知tan
A+B
2
=sinC,求sin
C
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面幾個命題:
①命題“所有能被2整除的數(shù)都是偶數(shù)”的否定是“所有能被2整除的數(shù)都不是偶數(shù)”;
②“a>1”是“f(x)=logax(a>0,a≠1)在(0,+∞)上為增函數(shù)”的充要條件;
③“若f(x)=ln(e3x+1)+ax是偶函數(shù),則a=-
3
2
”的逆否命題是真命題;
④若平面α⊥直線a,平面β⊥直線a,則α∥β;
⑤若直線m∥平面α,直線n∥β,α∥β,則m∥n.
真命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:y=m(m為實常數(shù))與曲線E:y=|lnx|的兩個交點A、B的橫坐標分別為x1、x2,且x1<x2,曲線E在點A、B處的切線PA、PB與y軸分別交于點M、N,有下面4個結(jié)論:
①|(zhì)
MN
|=2;
②三角形PAB可能為等腰三角形;
③若直線l與y軸的交點為Q,則|PQ|=1;
④是函數(shù)g(x)=x2+lnx的零點時,|
AO
|(O為坐標原點)取得最小值.
其中正確結(jié)論有
 
.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

同步練習(xí)冊答案