【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知3acosA=ccosB+bcosC.
(1)求cosA,sinA的值;
(2)若cosB+cosC= ,求cosC+ sinC的值.
【答案】
(1)解:三角形ABC中,角A,B,C所對(duì)的邊分別為a,b,c,3acosA=bcosC+ccosB,
由正弦定理可知:3sinAcosA=sinBcosC+sinCcosB,
可得3sinAcosA=sin(B+C)=sinA,
∵A為三角形內(nèi)角,sinA≠0,
∴cosA= ,sinA= =
(2)解:∵cosB+cosC=cosB﹣cos(A+B)= ,
∴cosB﹣cosAcosB+sinAsinB=cosB﹣ cosB+ sinB= ,可得:cosB+ sinB= ,
∴ =3,化簡(jiǎn)可得:tan2B﹣2 tanB+2=0,解得:tanB= ,
∴cosB= = ,sinB= = ,
∴cosC=﹣cos(A+B)=sinAsinB﹣cosAcosB= × ﹣ = ,sinC= = ,
∴cosC+ sinC= + =
【解析】(1)通過正弦定理化簡(jiǎn)已知條件,利用兩角和的正弦函數(shù)與二倍角公式,結(jié)合誰(shuí)教你的內(nèi)角和即可求A;(2)由三角形內(nèi)角和定理化簡(jiǎn)已知可得:cosB+ sinB= ,解得tanB,cosB,sinB的值,利用兩角和的余弦函數(shù)公式可求cosC,進(jìn)而可求sinC的值,即可計(jì)算得解.
【考點(diǎn)精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握正弦定理:;余弦定理:;;才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:條件p:實(shí)數(shù)t滿足使對(duì)數(shù)log2(﹣2t2+7t﹣5)有意義;條件q:實(shí)數(shù)t滿足不等式t2﹣(a+3)t+a+2<0
(1)若命題¬p為真,求實(shí)數(shù)t的取值范圍;
(2)若命題p是命題q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2 sin cos ﹣2sin2 (ω>0)的最小正周期為3π.
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為角A,B,C所對(duì)的邊,a<b<c, a=2csinA,并且f( A+ )= ,求cosB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】連續(xù)拋擲同一顆均勻的骰子,令第i次得到的點(diǎn)數(shù)為ai , 若存在正整數(shù)k,使a1+a2+…+ak=6,則稱k為你的幸運(yùn)數(shù)字.
(1)求你的幸運(yùn)數(shù)字為3的概率;
(2)若k=1,則你的得分為5分;若k=2,則你的得分為3分;若k=3,則你的得分為1分;若拋擲三次還沒找到你的幸運(yùn)數(shù)字則記0分,求得分X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:(x﹣2)2+(y﹣3)2=16及直線l:(m+2)x+(3m+1)y=15m+10(m∈R).
(1)證明:不論m取什么實(shí)數(shù),直線l與圓C恒相交;
(2)求直線l被圓C截得的弦長(zhǎng)的最短長(zhǎng)度及此時(shí)的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,,若橢圓經(jīng)過點(diǎn),且的面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)斜率為的直線與以原點(diǎn)為圓心,半徑為的圓交于,兩點(diǎn),與橢圓交于,兩點(diǎn),且,當(dāng)取得最小值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的右焦點(diǎn)為,離心率為,過作與軸垂直的直線與橢圓交于兩點(diǎn),.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)的直線的斜率存在且不為0,直線交橢圓于兩點(diǎn),若中點(diǎn)為,為原點(diǎn),直線交于點(diǎn),若以為直徑的圓過右焦點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,公園有一塊邊長(zhǎng)為2的等邊△ABC的邊角地,現(xiàn)修成草坪,圖中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上.
(1)設(shè)AD=x(x≥1),ED=y,求用x表示y的函數(shù)關(guān)系式;
(2)如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應(yīng)在哪里?如果DE是參觀線路,則希望它最長(zhǎng),DE的位置又應(yīng)在哪里?請(qǐng)予證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=kx2﹣kx,g(x)= ,若使得不等式f(x)≥g(x)對(duì)一切正實(shí)數(shù)x恒成立的實(shí)數(shù)k存在且唯一,則實(shí)數(shù)a的值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com