【題目】已知點(diǎn)在圓柱的底面圓上,為圓的直徑.

1)求證:;

2)若圓柱的體積,求異面直線所成的角(用反三角函數(shù)值表示結(jié)果).

【答案】1)見解析;(2

【解析】

1)根據(jù)圓柱的幾何特征及圓周角定理,我們易根據(jù)已知中點(diǎn)P在圓柱的底面圓周上,AB為圓O的直徑,得到APBP,BP,結(jié)合線面垂直的判定定理得到BP⊥平面后,易進(jìn)一步得到BP;
2)延長(zhǎng)PO交圓O于點(diǎn)Q,連接BQ,,結(jié)合圓柱的體積為,,我們易得∠即為異面直線所成角,利用余弦定理求出其余弦值,即可得到答案.

解:解:(1)證明:易知APBP

又由⊥平面PAB,

BP,
從而BP⊥平面,

BP
2)解:延長(zhǎng)PO交圓O于點(diǎn)Q,連接BQ,

BQAP,得或它的補(bǔ)角為異面直線所成的角.
由題意,解得3.
,則的直角三角形,

,

,
由余弦定理得,
則異面直線所成的角為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左、右焦點(diǎn)分別是、,左、右兩頂點(diǎn)分別是、,弦ABCD所在直線分別平行于x軸與y軸,線段BA的延長(zhǎng)線與線段CD相交于點(diǎn)如圖).

的一條漸近線的一個(gè)方向向量,試求的兩漸近線的夾角;

,,,,試求雙曲線的方程;

的條件下,且,點(diǎn)C與雙曲線的頂點(diǎn)不重合,直線和直線與直線l分別相交于點(diǎn)MN,試問:以線段MN為直徑的圓是否恒經(jīng)過定點(diǎn)?若是,請(qǐng)求出定點(diǎn)的坐標(biāo);若不是,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩焦點(diǎn)分別為,是橢圓在第一象限內(nèi)的一點(diǎn),并滿足,過作傾斜角互補(bǔ)的兩直線、分別交橢圓于、兩點(diǎn).

1)求點(diǎn)坐標(biāo);

2)當(dāng)直線經(jīng)過點(diǎn)時(shí),求直線的方程;

3)求證直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的中心為O,四邊形OBEF為矩形,平面OBEF⊥平面ABCD,點(diǎn)GAB的中點(diǎn),AB=BE=2.

)求證:EG∥平面ADF;

)求二面角OEFC的正弦值;

)設(shè)H為線段AF上的點(diǎn),且AH=HF,求直線BH和平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】誠(chéng)信是立身之本,道德之基,某校學(xué)生會(huì)創(chuàng)設(shè)了“誠(chéng)信水站”,既便于學(xué)生用水,又推進(jìn)誠(chéng)信教育,并用“”表示每周“水站誠(chéng)信度”,為了便于數(shù)據(jù)分析,以四周為一周期,下表為該水站連續(xù)十二周(共三個(gè)周期)的誠(chéng)信數(shù)據(jù)統(tǒng)計(jì):

第一周

第二周

第三周

第四周

第一個(gè)周期

第二個(gè)周期

第三個(gè)周期

1)計(jì)算表中十二周“水站誠(chéng)信度”的平均數(shù);

2)分別從表中每個(gè)周期的4個(gè)數(shù)據(jù)中隨機(jī)抽取1個(gè)數(shù)據(jù),設(shè)隨機(jī)變量表示取出的3個(gè)數(shù)中“水站誠(chéng)信度”超過的數(shù)據(jù)的個(gè)數(shù),求隨機(jī)變量的分布列和期望;

3)已知學(xué)生會(huì)分別在第一個(gè)周期的第四周末和第二個(gè)周期的第四周末各舉行了一次“以誠(chéng)為本”的主題教育活動(dòng),根據(jù)已有數(shù)據(jù),說明兩次主題教育活動(dòng)的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某部隊(duì)在一次軍演中要先后執(zhí)行六項(xiàng)不同的任務(wù),要求是:任務(wù)必須排在前三項(xiàng)執(zhí)行,且執(zhí)行任務(wù)之后需立即執(zhí)行任務(wù),任務(wù)、相鄰,則不同的執(zhí)行方案共有______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)購(gòu)買某種儀器,在儀器使用期間可能出現(xiàn)故障,需要請(qǐng)銷售儀器的企業(yè)派工程師進(jìn)行維修,因?yàn)榭紤]到人力、成本等多方面的原因,銷售儀器的企業(yè)提供以下購(gòu)買儀器維修服務(wù)的條件:在購(gòu)買儀器時(shí),可以直接購(gòu)買儀器維修服務(wù),維修一次1000元;在儀器使用期間,如果維修服務(wù)次數(shù)不夠再次購(gòu)買,則需要每次1500元..現(xiàn)需決策在購(gòu)買儀器的同時(shí)購(gòu)買幾次儀器維修服務(wù),為此搜集并整理了500臺(tái)這種機(jī)器在使用期內(nèi)需要維修的次數(shù),得到如下表格:

維修次數(shù)

5

6

7

8

9

頻數(shù)(臺(tái))

50

100

150

100

100

表示一臺(tái)儀器使用期內(nèi)維修的次數(shù),表示一臺(tái)儀器使用期內(nèi)維修所需要的費(fèi)用,表示購(gòu)買儀器的同時(shí)購(gòu)買的維修服務(wù)的次數(shù).

(1)若,求的函數(shù)關(guān)系式;

(2)以這500臺(tái)儀器使用期內(nèi)維修次數(shù)的頻率代替一臺(tái)儀器維修次數(shù)發(fā)生的概率,求的概率.

(3)假設(shè)購(gòu)買這500臺(tái)儀器的同時(shí)每臺(tái)都購(gòu)買7次維修服務(wù),或每臺(tái)都購(gòu)買8次維修服務(wù),請(qǐng)分別計(jì)算這500臺(tái)儀器在購(gòu)買維修服務(wù)所需要費(fèi)用的平均數(shù),以此為決策依據(jù),判斷購(gòu)買7次還是8次維修服務(wù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,點(diǎn)F為拋物線的焦點(diǎn),焦點(diǎn)F到直線3x-4y+3=0的距離為d1,焦點(diǎn)F到拋物線C的準(zhǔn)線的距離為d2,且。

(1)拋物線C的標(biāo)準(zhǔn)方程;

(2)若在x軸上存在點(diǎn)M,過點(diǎn)M的直線l分別與拋物線C相交于P、Q兩點(diǎn),且為定值,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,若動(dòng)點(diǎn)滿足:.

1)求動(dòng)點(diǎn)的軌跡的方程;

2)若點(diǎn)分別位于軸與軸的正半軸上,直線與曲線相交于兩點(diǎn),且,請(qǐng)問在曲線上是否存在點(diǎn),使得四邊形為坐標(biāo)原點(diǎn))為平行四邊形?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案