【題目】已知曲線C的極坐標(biāo)方程是ρ=2cosθ,以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線L的參數(shù)方程是 (t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程和直線L的普通方程;
(2)設(shè)點P(m,0),若直線L與曲線C交于A,B兩點,且|PA||PB|=1,求實數(shù)m的值.
【答案】
(1)解:曲線C的極坐標(biāo)方程是ρ=2cosθ,化為ρ2=2ρcosθ,可得直角坐標(biāo)方程:x2+y2=2x.
直線L的參數(shù)方程是 (t為參數(shù)),消去參數(shù)t可得
(2)解:把 (t為參數(shù)),代入方程:x2+y2=2x化為: +m2﹣2m=0,
由△>0,解得﹣1<m<3.
∴t1t2=m2﹣2m.
∵|PA||PB|=1=|t1t2|,
∴m2﹣2m=±1,
解得 ,1.又滿足△>0.
∴實數(shù)m=1 ,1
【解析】(1)曲線C的極坐標(biāo)方程是ρ=2cosθ,化為ρ2=2ρcosθ,利用 可得直角坐標(biāo)方程.直線L的參數(shù)方程是 (t為參數(shù)),把t=2y代入 +m消去參數(shù)t即可得出.(2)把 (t為參數(shù)),代入方程:x2+y2=2x化為: +m2﹣2m=0,由△>0,得﹣1<m<3.利用|PA||PB|=t1t2 , 即可得出.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C的方程為(x﹣ )2+(y+1)2=9,以O(shè)為極點,x軸的非負半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線OP:θ= (p∈R)與圓C交于點M,N,求線段MN的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)的定義在實數(shù)集R上的奇函數(shù),且當(dāng)x∈(﹣∞,0)時,xf′(x)<f(﹣x)(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a= f( ),b=(lg3)f(lg3),c=(log2 )f(log2 ),則( )
A.c>a>b
B.c>b>a
C.a>b>c
D.a>c>b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為R.a,b∈R,若此函數(shù)同時滿足:
①當(dāng)a+b=0時,有f(a)+f(b)=0;
②當(dāng)a+b>0時,有f(a)+f(b)>0,
則稱函數(shù)f(x)為Ω函數(shù).
在下列函數(shù)中:
①y=x+sinx;
②y=3x﹣( )x;
③y=
是Ω函數(shù)的為 . (填出所有符合要求的函數(shù)序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高三模擬考試的學(xué)生中隨機抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
求分數(shù)在[120,130)內(nèi)的頻率,并補全這個頻
率分布直方圖;
統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點
值作為代表,據(jù)此估計本次考試的平均分;
(3)用分層抽樣的方法在分數(shù)段為[110,130)的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2個,求至多有1人在分數(shù)段[120,130)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣x,若對任意x1 , x2∈[2,+∞),且x1≠x2 , 不等式 >0恒成立,則實數(shù)a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于x的方程x2﹣ax﹣1=0和x2﹣x﹣2a=0的實根分別為x1、x2和x3、x4 , 若x1<x3<x2<x4 , 則實數(shù)a的取值范圍為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com