要使函數(shù)y=1+2x+a•4x在(x∈(-∞,1])有y>0恒成立,則實(shí)數(shù)a的取值范圍是
(-
3
4
,+∞)
(-
3
4
,+∞)
分析:使用換元令t=2x,將函數(shù)轉(zhuǎn)化為一元二次函數(shù)y=1+t+at2進(jìn)行求解.
解答:解:設(shè)t=2x,因?yàn)閤∈(-∞,1],所以0<t≤2.
則原函數(shù)等價為y=1+t+at2,要使y>0恒成立,即y=1+t+at2>0,所以a>
-1-t
t2
=-(
1
t
)
2
-
1
t

設(shè)f(t)=-(
1
t
)
2
-
1
t
,則f(t)=-(
1
t
)
2
-
1
t
=-(
1
t
+
1
2
)
2
+
1
4
,因?yàn)?<t≤2,所以
1
t
1
2
,
所以y=-(
1
t
+
1
2
)
2
+
1
4
≤-(
1
2
+
1
2
)
2
+
1
4
=-
3
4
,所以a>-
3
4

故答案為:(-
3
4
.,+∞).
點(diǎn)評:本題考查了與指數(shù)函數(shù)有關(guān)的復(fù)合函數(shù)的最值問題,通過換元,將函數(shù)轉(zhuǎn)化為一元二次函數(shù),是解決本題的關(guān)鍵,對應(yīng)不等式恒成立問題通常是轉(zhuǎn)化為含參問題恒成立,即求函數(shù)的最值問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

要使函數(shù)y=1+2x+4xa在x∈(-∞,1]上y>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要使函數(shù)y=1+2x+4x·a在(-∞,1)上y>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要使函數(shù)y=1+2x+4xa在x∈(-∞,1]上y>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要使函數(shù)y=1+2x+4x·a在(-∞,1)上y>0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案