【題目】已知橢圓中心在坐標原點,焦點在坐標軸上,且經(jīng)過三點.
(1)求橢圓的方程;
(2)在直線上任取一點,連接,分別與橢圓交于兩點,判斷直線是否過定點?若是,求出該定點.若不是,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)當時,的最大值為2,求的值,并求出的對稱軸方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣(2m+1)x+2m(m∈R).
(1)當m=1時,解關(guān)于x的不等式xf(x)≤0;
(2)解關(guān)于x的不等式f(x)>0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖(1),(2),(3),(4)為最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.
(1)求出f(5)的值.
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在等比數(shù)列{an}中,a1=2,a4=16
(1)求數(shù)列{an}的通項公式;
(2)令 ,n∈N* , 求數(shù)列{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】省環(huán)保研究所對某市市中心每天環(huán)境放射性污染情況進行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時刻 (時)的關(guān)系為,其中是與氣象有關(guān)的參數(shù),且,若用每天的最大值為當天的綜合放射性污染指數(shù),并記作.
(1)令.求的取值范圍;
(2)求;
(3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前該市市中心的綜合放射性污染指數(shù)是否超標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個銷售季度購進了該農(nóng)產(chǎn)品.以 (單位: )表示下一個銷售季度內(nèi)的市場需求量, (單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.
(1)將表示為的函數(shù);
(2)根據(jù)直方圖估計利潤不少于57000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若需求量,則取,且的概率等于需求量落入的頻率),求的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正三棱柱的各條棱長均相等, 為的中點, 分別是線段和線段上的動點(含端點),且滿足.當運動時,下列結(jié)論中不正確的是( )
A. 平面平面 B. 三棱錐的體積為定值
C. 可能為直角三角形 D. 平面與平面所成的銳二面角范圍為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中, 為常數(shù), 為自然對數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)設(shè)曲線在處的切線為,當時,求直線在軸上截距的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com