求圓被直線(是參數(shù))截得的弦長.

解析試題分析:先將圓極坐標方程及直線參數(shù)方程轉(zhuǎn)化成直角坐標方程,然后利用垂徑定理及勾股定理求弦長.
試題解析:將圓的極坐標方程轉(zhuǎn)化成直角坐標方程:
即:,即;          2分
而直線 即: ,              4分
由于圓心到直線的距離,      6分
即直線經(jīng)過圓心,所以圓被直線截得的弦長為.         7分
考點:坐標系與參數(shù)方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知直線的參數(shù)方程為,(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為.
(1)把圓C的極坐標方程化為直角坐標方程;
(2)將直線向右平移h個單位,所得直線與圓C相切,求h.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系中,曲線C的參數(shù)方程為為參數(shù)).以原點為極點,x軸的正半軸為極軸建立極坐標系,點,直線的極坐標方程為.
(1)判斷點與直線的位置關系,說明理由;
(2)設直線與曲線C的兩個交點為A、B,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線的參數(shù)方程是 (φ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是ρ=2,正方形ABCD的頂點都在上,且A,B,C,D依逆時針次序排列,點A的極坐標為.
(Ⅰ)求點A,B,C,D的直角坐標;
(Ⅱ)設P為上任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以該直角坐標系的原點為極點,軸的正半軸為極軸的極坐標系下,曲線的方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)設曲線和曲線的交點為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系的軸的正半軸重合.直線的參數(shù)方程是(為參數(shù)),曲線C的極坐標方程為
(Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)設直線與曲線C相交于M,N兩點,求M,N兩點間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線過點P(-2,-4)的直線為參數(shù))與曲線C相交于點M,N兩點.
(Ⅰ)求曲線C和直線的普通方程;
(Ⅱ)若|PM|,|MN|,|PN |成等比數(shù)列,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,曲線C1的參數(shù)方程為為參數(shù))曲線C2的參數(shù)方程為為參數(shù))在以O為極點,x軸的正半軸為極軸的極坐標系中,射線l:θ=與C1,C2各有一個交點.當=0時,這兩個交點間的距離為2,當=時,這兩個交點重合.
(I)分別說明C1,C2是什么曲線,并求出a與b的值;
(II)設當=時,l與C1,C2的交點分別為A1,B1,當=-時,l與C1,C2的交點為A2,B2,求四邊形A1A2B2B1的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線C的極坐標方程 是=1,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數(shù)方程為為參數(shù))。
(1)寫出直線與曲線C的直角坐標方程;
(2)設曲線C經(jīng)過伸縮變換得到曲線,設曲線上任一點為,求的最小值。

查看答案和解析>>

同步練習冊答案