已知函數(shù).
(Ⅰ)求使不等式成立的的取值范圍;
(Ⅱ),求實數(shù)的取值范圍.

(Ⅰ);(Ⅱ).

解析試題分析:(Ⅰ)利用絕對值的幾何意義可得范圍是;(Ⅱ)利用決定值得幾何意義求出的最小值,可得.
試題解析:(1)由絕對值的幾何意義可知的取值范圍為          5分
(Ⅱ),,即                7分
由絕對值的幾何意義知:可看成數(shù)軸上到對應(yīng)點的距離和.
                           9分

所求的取值范圍為                       10分
考點:1.絕對值不等式;2.函數(shù)的最值;3.絕對值的幾何意義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是定義域為R的奇函數(shù),,
⑴求實數(shù)的值;
⑵若在x∈[2,3]上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

的定義域為 ,值域為,則稱函數(shù)上的“四維方軍”函數(shù).
(1)設(shè)上的“四維方軍”函數(shù),求常數(shù)的值;
(2)問是否存在常數(shù)使函數(shù)是區(qū)間上的“四維方軍”函數(shù)?若存在,求出的值,否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)二次函數(shù)在區(qū)間上的最大值、最小值分別是,集合
(Ⅰ)若,且,求的值;
(Ⅱ)若,且,記,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)若不等式的解集為,求實數(shù)的值;
(II)在(I)的條件下,若對一切實數(shù)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)不等式對一切R恒成立,求實數(shù)的取值范圍;
(2)已知是定義在上的奇函數(shù),當時,,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義域為的奇函數(shù)滿足,且當時,
(Ⅰ)求上的解析式;
(Ⅱ)當取何值時,方程上有解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)y=
(Ⅰ)求函數(shù)y的最小正周期;
(Ⅱ)求函數(shù)y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是冪函數(shù)且在上為減函數(shù),函數(shù)在區(qū)間上的最大值為2,試求實數(shù)的值。

查看答案和解析>>

同步練習(xí)冊答案