的定義域為 ,值域為,則稱函數(shù)上的“四維方軍”函數(shù).
(1)設(shè)上的“四維方軍”函數(shù),求常數(shù)的值;
(2)問是否存在常數(shù)使函數(shù)是區(qū)間上的“四維方軍”函數(shù)?若存在,求出的值,否則,請說明理由.

(1);(2)不存在使得是“四維方軍”函數(shù).

解析試題分析:(1)由“四維方軍”函數(shù)定義及上的單調(diào)性得,即可求出常數(shù)的值;(2)假設(shè)存在使是“四維方軍”函數(shù),根據(jù)的單調(diào)性列出方程組解決問題.
試題解析:(1)由.∵,.      3分
,∴.                5分
(2)假設(shè)存在使是“四維方軍”函數(shù).∵上單調(diào)遞減,∴,∴                  8分
,                10分
,這與已知矛盾,              12分
∴不存在使得是“四維方軍”函數(shù).           13分
考點:函數(shù)的定義域、值域及單調(diào)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)是定義域為的奇函數(shù).
(1)求的值;
(2)若,且上的最小值為,求的值.
(3)若,試討論函數(shù)上零點的個數(shù)情況。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某建筑公司要在一塊寬大的矩形地面(如圖所示)上進(jìn)行開發(fā)建設(shè),陰影部分為一公共設(shè)施建設(shè)不能開發(fā),且要求用欄柵隔開(欄柵要求在一直線上),公共設(shè)施邊界為曲線的一部分,欄柵與矩形區(qū)域的邊界交于點,交曲線于點,設(shè)

(1)將△為坐標(biāo)原點)的面積表示成的函數(shù);
(2)若在處,取得最小值,求此時的值及的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;
(2)問:是否存在常數(shù),當(dāng)時,的值域為區(qū)間,且的長度為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中
(1)寫出的奇偶性與單調(diào)性(不要求證明);
(2)若函數(shù)的定義域為,求滿足不等式的實數(shù)的取值集合;
(3)當(dāng)時,的值恒為負(fù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)計算的值,據(jù)此提出一個猜想,并予以證明;
(2)證明:除點(2,2)外,函數(shù)的圖像均在直線的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是同時符合以下性質(zhì)的函數(shù)組成的集合:
,都有;②上是減函數(shù).
(1)判斷函數(shù)()是否屬于集合,并簡要說明理由;
(2)把(1)中你認(rèn)為是集合中的一個函數(shù)記為,若不等式對任意的總成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求使不等式成立的的取值范圍;
(Ⅱ),,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是定義域為的奇函數(shù),且當(dāng)時,
,(
(1)求實數(shù)的值;并求函數(shù)在定義域上的解析式;
(2)求證:函數(shù)上是增函數(shù)。

查看答案和解析>>

同步練習(xí)冊答案